

Intel® TDX Connect

TEE-IO Device Guide

February 2023

Disclaimers

2 Document Number: 354272-001

Disclaimers
Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are

subject to change without notice. Intel does not guarantee the availability of these interfaces in any

future product. Contact your Intel representative to obtain the latest Intel product specifications and

roadmaps.

The products described might contain design defects or errors known as errata, which might cause the

product to deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have

been estimated or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other

legal analysis concerning Intel products described herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by

this document.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other

Intel literature may be obtained by calling 1-800-548-4725 or by visiting

http://www.intel.com/design/literature.htm.

© Intel Corporation, 2023. Intel, the Intel logo, and other Intel marks are trademarks of Intel

Corporation or its subsidiaries. Other names and brands might be claimed as the property of others.

http://www.intel.com/design/literature.htm.

Table of Contents

3 Document Number: 354272-001

Table of Contents
Disclaimers .. 2

Table of Contents ... 3

Introduction and Scope ... 6

Glossary ... 8

1 TEE-IO Device Architecture Overview ... 10

TEE-IO Security Model ... 10

Security Model for the Device ... 11

Implementing TEE-IO Device Stack .. 11

Secure Device Interface Lifecycle Example ... 12

2 TEE-IO Software Stack.. 15

Software Stack Overview... 15

Device Communication (DOE) ... 16

Device Attestation (SPDM) .. 16

Software Secure Communication (SPDM) .. 17

Link Encryption Key Management (IDE_KM) ... 18

Device Interface Management (TDISP) .. 19

Implementation Reference ... 21

SPDM software stack .. 21

IDE_KM software stack .. 22

TDISP software stack .. 22

3 TEE-IO Hardware Stack .. 24

IDE Stream ... 24

IDE Stream Precedence ... 27

TEE Limited Stream ... 27

Partial Header Encryption .. 27

TDI TLP Rule ... 28

TDI as Completer.. 30

TDI as Requester .. 32

ATS Rule ... 34

Peer to Peer (P2P) .. 36

Table of Contents

4 Document Number: 354272-001

TDISP Interoperability with PCIe Capabilities... 37

MSI-X ... 37

ATS ... 37

Direct P2P .. 37

PASID .. 37

LNR ... 37

TPH ... 38

4 Device Security Architecture .. 39

Resource Isolation and Protection .. 39

Address Translation .. 39

Device Resource .. 39

Device Identity and Measurement Reporting ... 39

Device Firmware Resilience ... 40

Runtime Firmware Update ... 40

Secure Interconnects .. 42

Device Attached Memory .. 42

TDI Security ... 42

Data Integrity Errors .. 42

Debug Modes ... 43

Device Debug Interface ... 43

Device Reset.. 43

Conventional Reset ... 43

Function Level Reset (FLR) ... 44

Timing .. 44

Error Handling .. 45

Error Trigger ... 45

Error Notification .. 48

Error Recovery ... 50

5 Summary .. 52

Appendix A: Intel® TDX Connect Interoperability .. 53

TDX Connect Software Interoperability .. 53

Table of Contents

5 Document Number: 354272-001

DOE .. 53

SPDM ... 54

IDE_KM ... 55

TDISP ... 56

TDX Connect Hardware Interoperability .. 57

IDE Stream .. 57

TDISP ... 59

Appendix B: Secure Device Interface Lifecycle Example .. 66

SPDM Management ... 66

SPDM Session Setup .. 66

SPDM Session Termination ... 66

SPDM Session Heartbeat .. 67

SPDM Session Key Update ... 67

Device Information Recollection ... 67

IDE Stream Management ... 68

IDE Stream Setup ... 68

IDE Stream Stop ... 69

IDE Stream Key Refresh ... 70

TDI Lifecycle Management ... 71

TDI Assignment ... 71

TDI Teardown .. 73

References.. 74

Standards ... 74

Web Resources .. 76

Introduction and Scope

6 Document Number: 354272-001

Introduction and Scope
In the computer industry, hardware-based trusted execution environments (TEEs) are used to

provide the confidential computing environment. In this document, such TEEs are referred to

as Trusted Execution Environment VMs (TVMs) to distinguish them from traditional virtual

machines (VMs). Today, multiple CPU vendors such as Intel, AMD, ARM, and RISC-V already

published the solution to address the need based upon the new capability in the host CPU.

In order to achieve high performance in the data center, the host CPU may offload some

workload to the device, such as Hardware Security Module (HSM) for crypto accelerating,

Graphic Processing Unit (GPU) for AI processing, and Smart Network Interface Card (NIC) for

network processing. In this case, the confidential computing environment is extended from

the TVM to a portion of a device (TEE Device Interface, also known as TDI).

The TDI could be a Physical function (PF), a Virtual function (VF), or an Assignable Device

Interface (ADI). To support such functions, the industry standard groups, such as PCI-SIG and

Compute Express Link (CXL) Consortium, defined the new standard to support the use case,

including Integrity and Data Encryption (IDE) and TEE Device Interface Security Protocol

(TDISP).

In a host environment, we use TEE security manager (TSM) to indicate the logic Trust

Computing Base (TCB) component to enforce the security policy. The TSM could be inside of a

TVM, or the TSM could be a component outside of the TVM and trusted by the TVM.

Inside the device, we use Device Security Manager (DSM) to indicate the logical TCB

component that enforces the security policy. The TSM should set up a secure management

channel with the DSM to get the device information and manage the device interface. The TSM

and DSM may also negotiate the encryption key for secure communication.

Introduction and Scope

7 Document Number: 354272-001

Figure 0-1: TEE-IO Component Conceptual View (Source: [PCIe TDISP 1.0])

Figure 0-1 shows a conceptual view of TEE-IO component as an example.

This whitepaper's goal is to provide the guidance on how to build a device to meet the

confidential computing requirement, as such the TVM can offload the workload to the device.

The organization of the white paper is as follows:

• Chapter 1 provides an overview on how the host software establishes the trust

relationship with the device.

• Chapter 2 describes the software protocols and requirements for secure management

of SPDM and IDE session management between TSM and DSM and for secure

management of TDI assignment to a TVM.

• Chapter 3 describes the device and the host hardware shared responsibilities for

ensuring access controls of data path MMIO and DMA access controls between a TDI

and its corresponding TVM.

Introduction and Scope

8 Document Number: 354272-001

• Chapter 4 describes intra-device security requirements including isolation, integrity,

and confidentiality protection of TDI and TVM private data, device identity, and

measurement reporting and device firmware update.

• Appendix A specifies the specific requirements for TEE-IO device interoperability with

the TDX Connect architecture.

Glossary

Table 0-1: Glossary

Term Description

ACS Access Control Service

ATS Address Translation Service

CA Completer Abort

CMA Component Measurement and Authentication

CPL Completion

DOE Data Object Exchange

DSM Device Security Manager

EP Endpoint

FLR Function Level Reset

IDE Integrity and Data Encryption

IDE_KM IDE Key Management

LN Lightweight Notification

LNR LN Request

MSI Message Signal Interrupt

NPR Non-Posted Request

P2P Peer to Peer

PASID Process Address Space ID

PR Posted Request

PRS Page Request Service

Introduction and Scope

9 Document Number: 354272-001

Term Description

RP Root Port

SPDM Security Protocol and Data Model

TDI TEE Device Interface

TDISP TEE Device Interface Security Protocol

TEE Trusted Execution Environment

TLP Transaction Layer Packet

TPH TLP Processing Hint

TSM TEE Security Manager

TVM TEE Virtual Machine

UC Unexpected Completion

UR Unsupported Request

TEE-IO Device Architecture Overview

10 Document Number: 354272-001

1 TEE-IO Device Architecture Overview
This chapter provides an overview of the TEE-IO device architecture.

TEE-IO Security Model
According to [PCIe TDISP 1.0], the TEE-I/O security model is primarily intended to apply to

systems using device resources directly assigned to VMs. The device resource can be assigned

as a TEE-IO Device Interface (TDI). The Before the TVM accepts a TDI, only the TSM and the

host CPU are in the TEE TCB of the TVM. Once the TVM accepts a TDI, the TVM extends its TEE

TCB to the entire TEE-IO device DSM, even if only one TDI from the device is accepted by the

TVM.

The table 1-1 provides a summary of the shared security responsibility model of TDISP:

Table 1-1: Component in TEE-IO Security Model

Component Role Responsibilities

TSM TEE TCB for TVM, a

logic entity in a host.

Enforce security policies on the host.

DSM TEE TCB for TVM, a

logic entity in a device

Enforce security policies on the device.

TVM TEE virtual machine on

host

Admit the DSM into the TEE TCB. Accept the TDI.

TDI Portion of the device

assigned to a TVM

Provide device functions to a TVM.

VMM Resource Manager Attach and detach TDIs to a TVM.

Figure 1-1: Component in TEE-IO

TEE-IO Device Architecture Overview

11 Document Number: 354272-001

Security Model for the Device
According to [PCIe TDISP 1.0] (11.1 Overview of the TEE-I/O Security Model as it Relates to

Devices, page 11), the security objective for a TEE-IO device is to protect the TVM data, code,

and execution state with respect to:

• Confidentiality: protection from disclosure to entities such as firmware, software, or

hardware not in the TEE TCB of the TVM (e.g., other TVMs, VMM, etc.).

• Integrity: protection from modification by entities such as firmware, software, or

hardware not in the TEE TCB of the TVM (e.g., other TVMs, VMM, etc.). Replay-

protection of the TVM data is also in scope.

There is no requirement for the protection of TVMs against denial-of-service attacks.

To achieve these security objectives, the device shall support:

1. Device Identity Authentication and Measurement Reporting. In order to protect a

TVM from TEE-IO device identity spoofing, the device shall implement a root-of-trust

(ROT) for measurement (RTM), storage (RTS) and reporting (RTR) to support identity

authentication and measurement reporting. The device debug interface shall not

impact the device security properties. See Chapter 4 for detail.

2. Authenticated Secure Communication. The device shall use a secure communication

channel to transfer the trusted data between the host and the device. The secure

channel shall provide confidentiality, integrity, replay protection and message ordering

protection. See Chapter 2 Secure Protocol and Data Model (SPDM) for management

communication channel and Chapter 3 Integrity and Data Encryption (IDE) stream for

data communication channel.

3. TEE Device Interface (TDI) Management. The device shall support locking down

configurations of the TDI, reporting the configuration in a trusted manner, securely

placing TDIs to operational state, and tearing them down securely when the TDI is

detected. See Chapter 2 TEE Device Interface Security Protocol (TDISP) and Chapter 3

PCI Express Transaction Layer Packet (TLP) Rule for TDI.

4. Device Security Architecture. The device shall provide isolation and access control for

the TVM data in the device for protection against the entities not in the trust boundary

of TVM (such as the VMM, other TVMs, untrusted device component, other TDIs). The

device should implement Advanced Error Reporting (AER) to report errors according to

[PCIe TDISP 1.0] page 13. See Chapter 4 for detail.

Implementing TEE-IO Device Stack
According to [PCIe TDISP 1.0] page 13, the device memory could be system level memory

(defined as non-TEE memory), or TDI specific memory (defined as TEE memory). The TEE

TEE-IO Device Architecture Overview

12 Document Number: 354272-001

memory shall have mechanisms to ensure the confidentiality and optional integrity of TVM

data.

The device implementation to support TEE-IO can be separated as software stack and

hardware stack. Usually, the TEE-IO software stack is to transfer the management

information, such as device identity, device measurement, data encryption key, TDI lock, TDI

report, TDI attachment, TDI detachment, etc.

The TEE-IO hardware stack provides link encryption to ensure the link’s confidentiality and

integrity, downstream access control logic to prevent non-trusted MMIO access to TEE

memory, and upstream logic to ensure device DMA TEE data sent with encrypted IDE TLP.

Secure Device Interface Lifecycle Example

The following figures show the high-level software flow for TEE-IO architecture as a typical

example.

Step 1 (SPDM setup). See Figure 1-2. The VMM calls the TSM to establish the SPDM session

with the device. Then the TSM will own the SPDM session. The TSM will also collect the device

certificate and measurement and return to VMM for device attestation later. This step is per

device.

Step 2 (IDE Stream setup). See Figure 1-3. The VMM calls the TSM to use IDE_KM to set up the

default IDE selective steam with the device. The IDE_KM is an SPDM vendor defined protocol

sent in the SPDM session. The TSM will also configure the SOC IDE key programming register

to ensure the IDE selective stream between SOC and device is established. After this step, the

device and host SOC have two secure communication sessions. The SPDM session is a

software session, which is used for software configuration such as IDE_KM and TDISP. The IDE

steam is hardware session, which is used to secure the PCI Express TLP. This step is also per

device.

Step 3 (TDI assignment). See Figure 1-4. The VMM locks the TDI and launches a TVM, then

assigns the TDI to the TVM.

• The TVM will get the device certificate and measurement from the TSM, then the TVM will

verify the device based on a TVM specific policy. For example, the device certificate must

have a trusted root Certificate Authority (CA) and the device measurement must match the

latest reference manifest published by the device vendor. If the verification passes, the TVM

can accept the TDI and use TDISP protocol to manage the TDI. If the verification fails, the

TVM will reject the device.

• After the device is approved by the TVM, the VMM sets up the DMA and MMIO for the TDI

and lets the TVM accept the configuration.

• Now TVM can start the TDI and use trusted DMA and MMIO to communicate with the TDI.

This step is per device interface.

TEE-IO Device Architecture Overview

13 Document Number: 354272-001

The VMM can repeat the same above process to assign another TDI to another TVM. See

Figure 1-5. Note: One TVM may accept multiple TDIs. But one TDI must not be assigned to

more than one TVM.

If a TDI is no longer needed, then the TVM or VMM can stop the TDI. If all TDIs in a device are

removed, the VMM can remove the IDE stream and terminate the SPDM session for the device.

Appendix B provides more detail on SPDM management, IDE Stream management, and TDI

lifecycle management.

Figure 1-2: Device SPDM Session Setup for Secure Communication

Figure 1-3: Device IDE Setup for Link Encryption

TEE-IO Device Architecture Overview

14 Document Number: 354272-001

Figure 1-4: TVM Launch and TDI Start

Figure 1-5: Another TVM Launch and TDI Start

2 TEE-IO Software Stack

15 Document Number: 354272-001

2 TEE-IO Software Stack
This chapter describes the TEE-IO software stack requirement for the device. The device TEE-

IO software stack implements the responder role of the secure device management protocols

(i.e., SPDM, IDE_KM and TDISP).

Software Stack Overview
Figure 2-1 shows one example of implementing the TEE-IO software stack in the device.

The purpose of the TEE Device Interface Security Protocol (TDISP) protocol is to manage the

TDI. The purpose of the Integrity and Data Encryption Key Management (IDE_KM) protocol is

to configure the IDE keys for the PCIe Root Port. Both IDE_KM and TDISP are application-level

protocols that are transported within a Secure Protocol and Data Model (SPDM) secure

session for transport level protection. The SPDM messages are sent and received via PCI Data

Object Exchange (DOE) interface.

Figure 2-1: Device DSM Software Stack

On the host side, the VMM manages the DOE mailbox to send or receive SPDM messages. The

TSM acts as the security policy enforce to encrypt and decrypt SPDM secure messages,

including IDE_KM message and TDISP message. At runtime, the VMM or TVM requests the

TSM to generate a protocol message request. Then the VMM sends the request to the device

2 TEE-IO Software Stack

16 Document Number: 354272-001

DOE mailbox. Later, the VMM receives the response from the DOE mailbox and sends back to

TSM to process it.

On the device side, there should be a listener to wait for SPDM messages. Then the SPDM

stack in DSM will decrypt the SPDM secure messages and dispatch to TDISP or IDE_KM

callback to process the TDISP or IDE_KM request message. Later, DSM will encrypt the TDISP

or IDE_KM response message and sends to DOE mailbox on the device.

Device Communication (DOE)
PCI Express Data Object Exchange (DOE) ECN defines a mailbox mechanism for the host

software to perform data object exchange with the device, such as a SPDM message or a

secure SPDM message. The host uses the DOE to exchange messages with the device. One

device may support multiple DOE mailboxes.

Requirement:

1. The device shall support SPDM over PCI DOE.

2. The device shall expose DOE Extended Capability registers for capability detection and

control. [PCIe DOE 1.0] 7.9.xx Data Object Exchange (DOE) Extended

Capability.

3. The device shall support the DOE 1.0 protocol including DOE Discovery (Data Object 0),

CMA/SPDM (Data Object 1), Secure CMA/SPDM (Data Object 2). [PCIe DOE 1.0] 6.xx Data

Object Exchange (DOE) and [PCIe IDE 1.0] 6.xx Data Object Exchange (DOE).

4. The device shall provide the DOE Extended Capability within function 0 to support the

establishment of the SPDM session and transport secured messages. [PCIe TDISP 1.0] 11.2.2

TDISP message transport.

For TDX Connect compatibility, please refer to Appendix A “DOE” section.

Device Attestation (SPDM)
The TVM needs to offload the confidential workload to the device TDI. As such, the TVM

needs to verify the device.

PCI Express Component Measurement and Authentication (CMA) ECN defines the

mechanism based upon Secure Protocol and Data Model (SPDM). The DSM provides the

device certificate, authentication, and measurement reporting via SPDM.

Requirement:

1. The device shall support SPDM version 1.2.

2 TEE-IO Software Stack

17 Document Number: 354272-001

2. The device shall support SPDM capability: CERT_CAP and MEAS_CAP, and support

GET_DIGEST, GET_CERTIFICATE, and GET_MEASUREMENTS.

3. The device shall support at least one of BaseAsymAlgo listed in CMA ECN:

TPM_ALG_RSASSA_3072, TPM_ALG_ECDSA_ECC_NIST_P256,

TPM_ALG_ECDSA_ECC_NIST_P384.

4. The device shall support at least one of BaseHashAlgo listed in CMA ECN:

TPM_ALG_SHA_256, TPM_ALG_SHA_384.

5. The device shall support at least one of MeasurementHashAlgo listed in CMA ECN:

TPM_ALG_SHA_256, TPM_ALG_SHA_384.

6. The device shall support MeasurementSpecification: DMTF (bit 0).

7. The device certificate shall follow DSP0274 requirement. The X.509 certificate shall follow

SPDM 1.2.1 Table 33 – Required fields. The X.509 certificate OID shall follow SPDM 1.2.1,

10.8.2, SPDM certificate requirements and recommendations, including 10.8.2.1 Extended Key

Usage authentication OIDs, 10.8.2.2 SPDM Non-Critical Certificate Extension OID.

8. The device shall only return the DMTFSpecMeasurementValueType defined in SPDM 1.2.1.

Table 45 – DMTF measurement specification format.

9. The DICE device shall support ALIAS_CERT_CAP and return DICE alias certificate.

10. The DICE alias certificate shall include DiceTcbInfo OID. The DiceTcbInfo shall include the

firmware information such as digest and/or secure version number (SVN).

For TDX Connect compatibility, please refer to Appendix A “SPDM” section.

Software Secure Communication (SPDM)
The TSM needs to establish an authenticated secure session with the device for integrity and

confidentiality. This software secure session is used to exchange the hardware encryption key

such as IDE_KM protocol, or TDI management such as TDISP protocol.

DMTF Secure Protocol and Data Model (SPDM) provides an authenticated secure session

between the host TSM and the device DSM. PCI Express Integrity and Data Encryption (IDE)

ECN and TEE Device Interface Security Protocol (TDISP) ECN rely on SPDM for the secure

management data communication.

Requirement:

1. The device shall support SPDM capability: ENCRYPT_CAP, MAC_CAP, and KEY_EX_CAP, and

support KEY_EXCHANGE, FINISH, and END_SESSION.

2 TEE-IO Software Stack

18 Document Number: 354272-001

2. The device shall support at least one of DHE Group: secp256r1, secp384r1.

3. The device shall support at least one of AEAD Cipher Suite: AES-256-GCM.

4. The device shall support Key Schedule Algorithm: DMTF.

5. The device shall support DSP0274 OtherParamsSupport.OpaqueDataFmt1.

6. The device shall use DSP0277 version 1.1 as Secured Message transport binding version in

the Secure Message opaque data.

7. The device should support KEY_UPD_CAP. If the device supports KEY_UPD_CAP, the device

shall support update keys for both directions with UpdateAllKeys.

8. The device may support HBEAT_CAP. If it is supported, the device session shall be

terminated after twice HeartbeatPeriod.

9. The DSM shall teardown the session if a firmware update is triggered, if the SPDM 1.2

SessionPolicy.TerminationPolicy = 0.

10. The DSM shall keep the confidentiality of the SPDM session key.

11. The DSM may perform mutual authentication based upon the TSM capability during SPDM

session establishment, or DSM may perform TVM authentication in an established SPDM

session. This is use case specific.

NOTE: The TSM may be implemented in software, making it hard to provision a public

certificate and a private key to sign the SPDM message at session creation. The TSM may use a

non-standardized TEE-Quote based certificate as described in Remote-Attestation TLS (RA-

TLS) to support quote-based mutual attestation. Or the TSM/DSM may use two-phase

authentications: In phase 1 TSM attests the device as described in SPDM specification; in

phase 2 DSM authenticates the host environment including host TEE TCB (CPU and TSM), host

TVM, and so on with an implementation specific mechanism.

For TDX Connect compatibility, please refer to Appendix A “SPDM” section.

Link Encryption Key Management (IDE_KM)
The TSM needs to setup link encryption with the device to mitigate possible attacks in the

path between the host and device.

PCI Express Integrity and Data Encryption (IDE) ECN provides confidentiality, integrity, and

replay protection for Transaction Layer Packet (TLP) transmitted and received between two

PCI Express ports. The TSM uses IDE key management (IDE_KM) protocol to manage the IDE

keys with the DSM, such as programming the IDE key, starting or stopping the IDE stream. The

2 TEE-IO Software Stack

19 Document Number: 354272-001

DSM configures the IDE encryption keys in the device. Please refer to Chapter 3, IDE Stream

section, for an example on how to setup IDE stream, stop IDE stream, etc.

Requirement:

1. The DSM shall support IDE_KM payload in SPDM vendor defined message. [PCIe IDE 1.0]

6.99.3 IDE Key Management (IDE_KM), page 19.

2. The device shall expose DOE for IDE in Function 0. [PCIe IDE 1.0] 6.99.3 IDE Key

Management (IDE_KM), page 20.

3. The DSM shall support IDE_KM messages QUERY. [PCIe IDE 1.0] 6.99.3 IDE Key

Management (IDE_KM), page 21.

4. The DSM shall support IDE_KM messages KEY_PROG. [PCIe IDE 1.0] 6.99.3 IDE Key

Management (IDE_KM), page 22.

5. The DSM shall support IDE_KM messages SET_K_GO. [PCIe IDE 1.0] 6.99.3 IDE Key

Management (IDE_KM), page 23.

6. The DSM shall support IDE_KM messages SET_K_STOP. [PCIe IDE 1.0] 6.99.3 IDE Key

Management (IDE_KM), page 24.

7. The DSM shall handle IDE enable/disable in IDE Stream Enable bit, according to [PCIe IDE

1.0] 6.99.3 IDE Key Management (IDE_KM), page 24.

8. The DSM shall manage the Secure/Insecure State correctly in SPDM secure session,

according to [PCIe IDE 1.0] 6.99.3 IDE Key Management (IDE_KM), page 24.

9. The DSM shall handle key correctly, according to [PCIe IDE 1.0] 6.99.3 IDE Key Management

(IDE_KM), page 26. The key set bit shall be used for the key update.

For TDX Connect compatibility, please refer to Appendix A “IDE_KM” section.

Device Interface Management (TDISP)
One device may be used by multiple TVMs. The VMM needs to assign the TDI in the device to

the TVM. Also, the TVM needs to decide to start or stop the TDI.

PCI Express TEE Device Interface Security Protocol (TDISP) ECN defines such mechanism.

The TVM and VMM may use TDISP protocol to manage the device TDI. The DSM provides the

interface management, such as TDI configuration lock with policy (such as NO_FW_UPDATE)

and reporting, and TDI attach and detach.

Requirement:

2 TEE-IO Software Stack

20 Document Number: 354272-001

1. The DSM shall ensure the IDE_KM (for IDE keys establishment) and TDISP (for TDI

management) using same SPDM session. [PCIe TDISP 1.0] 11.1 Overview of the TEE-I/O

Security Model as it Relates to Devices, page 15.

2. If implemented, the DSM shall follow the peer-to-peer (P2P) communication rule to set up

P2P stream, according to [PCIe TDISP 1.0] 11.2 TDISP Rules, page 19.

3. The DSM shall support TDISP payload in SPDM vendor defined message, according to [PCIe

TDISP 1.0] 11.2.2 TDISP Message Transport, page 21.

4. The DSM shall follow Requirements for Responders (DSM), according to [PCIe TDISP 1.0]

11.2.4 Requirements for Responders (DSM), page 22.

5. The DSM shall follow DSM Tracking and Handling of Locked TDI Configurations, according

to [PCIe TDISP 1.0] 11.2.6 DSM Tracking and Handling of Locked TDI Configurations, page 23.

6. The DSM shall support TDISP required messages: TDISP_VERSION, TDISP_CAPABILITIES,

LOCK_INTERFACE_RESPONSE, DEVICE_INTERFACE_REPORT, DEVICE_INTERFACE_STATE,

START_INTERFACE_RESPONSE, STOP_INTERFACE_RESPONSE.

7. The DSM shall follow TDISP Message Format and Protocol Versioning, according to [PCIe

TDISP 1.0] 11.3.3 TDISP Message Format and Protocol Versioning, page 28.

8. The DSM shall support GET_TDISP_VERSION according to [PCIe TDISP 1.0] 11.3.4

GET_TDISP_VERSION, page 30 and 11.3.5 TDISP_VERSION, page 30.

9. The DSM shall support GET_TDISP_CAPABILITIES according to [PCIe TDISP 1.0] 11.3.6

GET_TDISP_CAPABILITIES, page 30 and 11.3.7 TDISP_CAPABILITIES, page 31.

The DSM shall support a DEV_ADDR_WIDTH that is equal to or larger than host address width,

to prevent address alias attack.

10. The DSM shall support LOCK_INTERFACE_REQUEST according to [PCIe TDISP 1.0] 11.3.8

LOCK_INTERFACE_REQUEST, page 31 and 11.3.9 LOCK_INTERFACE_RESPONSE, page 34.

11. The DSM shall support GET_DEVICE_INTERFACE_REPORT according to [PCIe TDISP 1.0]

11.3.10 GET_DEVICE_INTERFACE_REPORT, page 35 and 11.3.11

DEVICE_INTERFACE_REPORT, page 36. The DSM shall generate the TDI report according to

[PCIe TDISP 1.0] Table 15 TDI Report Structure, page 37.

12. The DSM shall support GET_DEVICE_INTERFACE_STATE according to [PCIe TDISP 1.0]

11.3.12 GET_DEVICE_INTERFACE_STATE, page 40 and 11.3.13 DEVICE_INTERFACE_STATE,

page 40.

13. The DSM shall support START_INTERFACE_REQUEST according to [PCIe TDISP 1.0]

11.3.14 LOCK_INTERFACE_REQUEST, page 40 and 11.3.15 START_INTERFACE_RESPONSE,

page 41.

2 TEE-IO Software Stack

21 Document Number: 354272-001

14. The DSM shall support STOP_INTERFACE_REQUEST according to [PCIe TDISP 1.0] 11.3.16

LOCK_INTERFACE_REQUEST, page 41 and 11.3.17 STOP_INTERFACE_RESPONSE, page 42.

15. If implemented, the DSM shall support BIND_P2P_STREAM_REQUEST according to [PCIe

TDISP 1.0] 11.3.18 BIND_P2P_STREAM_REQUEST, page 42 and 11.3.19

BIND_P2P_STREAM_RESPONSE, page 43.

16. If implemented, the DSM shall support UNBIND_P2P_STREAM_REQUEST according to

[PCIe TDISP 1.0] 11.3.20 UNBIND_P2P_STREAM_REQUEST, page 43 and 11.3.21

UNBIND_P2P_STREAM_RESPONSE, page 44.

17. If implemented, the DSM shall support SET_MMIO_ATTRIBUTE_REQUEST according to

[PCIe TDISP 1.0] 11.3.22 SET_MMIO_ATTRIBUTE_REQUEST, page 44 and 11.3.23

SET_MMIO_ATTRIBUTE_RESPONSE, page 45.

18. The DSM shall support TDISP_ERROR according to [PCIe TDISP 1.0] 11.3.24

TDISP_ERROR, page 46.

19. If implemented, the DSM shall support VDM_REQUEST according to [PCIe TDISP 1.0]

11.3.25 VDM_REQUEST, page 48 and 11.3.26 VDM_RESPONSE, page 48.

For TDX Connect compatibility, please refer to Appendix A “TDISP” section.

Implementation Reference

SPDM software stack
The DMTF open sourced SPDM sample implementation at https://github.com/DMTF/libspdm.

Table 2-1: SPDM software Stack Reference

Component Purpose URL

spdm_resp

onder_lib

Responder library. It can be used

on the device side.

https://github.com/DMTF/libspdm/tree/

main/library/spdm_responder_lib

spdm_requ

ester_lib

Requester library. It can be used to

test the device.

https://github.com/DMTF/libspdm/tree/

main/library/spdm_requester_lib

spdm_devic

e_secret_lib

_sample

sample device library to support

measurement reporting and digital

signature generation on the device

side

https://github.com/DMTF/libspdm/tree/

main/os_stub/spdm_device_secret_lib_

sample

https://github.com/DMTF/libspdm
https://github.com/DMTF/libspdm/tree/main/library/spdm_responder_lib
https://github.com/DMTF/libspdm/tree/main/library/spdm_responder_lib
https://github.com/DMTF/libspdm/tree/main/library/spdm_requester_lib
https://github.com/DMTF/libspdm/tree/main/library/spdm_requester_lib
https://github.com/DMTF/libspdm/tree/main/os_stub/spdm_device_secret_lib_sample
https://github.com/DMTF/libspdm/tree/main/os_stub/spdm_device_secret_lib_sample
https://github.com/DMTF/libspdm/tree/main/os_stub/spdm_device_secret_lib_sample

2 TEE-IO Software Stack

22 Document Number: 354272-001

spdm-emu An SPDM requester emulator,

which may be used to test the

device SPDM stack.

https://github.com/DMTF/spdm-emu

spdm-

dump

A tool to dump SPDM messages

with PCAP format.

https://github.com/DMTF/spdm-dump

SPDM-

Responder-

Validator

A test suite for the SPDM device https://github.com/DMTF/SPDM-

Responder-Validator

IDE_KM software stack
The DMTF open sourced SPDM sample implementation includes an IDE_KM software

example.

Table 2-2: IDE_KM software Stack Reference

Component Purpose URL

pci_ide_km

_responder

_lib

Responder library. It can be used

on the device side.

https://github.com/DMTF/spdm-

emu/tree/main/library/pci_ide_km_resp

onder_lib

pci_ide_km

requester

lib

Requester library. It can be used to

test the device.

https://github.com/DMTF/spdm-

emu/tree/main/library/pci_ide_km_requ

ester_lib

pci_ide_km

_device_lib

_sample

sample device library to support

IDE_KM messages.

https://github.com/DMTF/spdm-

emu/tree/main/library/pci_ide_km_devi

ce_lib_sample

TDISP software stack
The DMTF open sourced SPDM sample implementation includes a TDISP software example.

Table 2-3: TDISP software Stack Reference

Component Purpose URL

pci_tdisp_re

sponder_lib

Responder library. It can be used

on the device side.

https://github.com/DMTF/spdm-

emu/tree/main/library/pci_tdisp_reques

ter_lib

pci_tdisp_re

quester_lib

Requester library. It can be used to

test the device.

https://github.com/DMTF/spdm-

emu/tree/main/library/pci_tdisp_respo

nder_lib

https://github.com/DMTF/spdm-emu
https://github.com/DMTF/spdm-dump
https://github.com/DMTF/SPDM-Responder-Validator
https://github.com/DMTF/SPDM-Responder-Validator
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_responder_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_responder_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_responder_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_requester_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_requester_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_requester_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_device_lib_sample
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_device_lib_sample
https://github.com/DMTF/spdm-emu/tree/main/library/pci_ide_km_device_lib_sample
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_requester_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_requester_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_requester_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_responder_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_responder_lib
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_responder_lib

2 TEE-IO Software Stack

23 Document Number: 354272-001

pci_tdisp_d

evice_lib_sa

mple

sample device library to support

IDE_KM messages.

https://github.com/DMTF/spdm-

emu/tree/main/library/pci_tdisp_device

_lib_sample

https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_device_lib_sample
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_device_lib_sample
https://github.com/DMTF/spdm-emu/tree/main/library/pci_tdisp_device_lib_sample

3 TEE-IO Hardware Stack

24 Document Number: 354272-001

3 TEE-IO Hardware Stack
This chapter describes the TEE-IO hardware stack requirement on the device side. The TEE-IO

hardware stack is the data encryption engineer to support trusted MMIO and trusted DMA,

and hardware registers such as data encryption key, TDI state, etc.

IDE Stream
IDE secures the TLP traffic from one port to another port. IDE TLP Prefix includes a “T bit”,

which indicates the TLP originated from within a trusted execution environment. The “T bit”

provides a mechanism to distinguish TLPs that are associated with a TVM. IDE mechanisms

ensure that the T bit (like other TLP content) is secured during transit.

IDE Stream State Machine includes Insecure or Secure state. See figure 3-1.

Secure State: The device IDE Stream shall enter Secure State only after all necessary steps are

done, including the keys are programmed, and the IDE stream is enabled.

Insecure State: The device IDE Stream shall enter an Insecure state if any necessary steps are

not met. For example, the IDE stream is disabled, or IDE Check Failed error happens.

Ready sub-state: This is a sub-state of Insecure state. The device has all keys programmed.

The only rest step is to trigger IDE stream. The trigger action requires both K_SET_GO

messages and IDE Stream Enable bit set in the IDE Extended Capability Register.

3 TEE-IO Hardware Stack

25 Document Number: 354272-001

Figure 3-1: IDE Stream State Machine (Source: [PCIe IDE 1.0])

Requirement:

1. The device shall maintain the IDE Stream Secure State and Insecure State, according to

[PCIe IDE 1.0] 6.99.1 IDE Stream and TEE State Machines, page 16.

2. The device shall implement IDE Extended Capability in function 0. [PCIe IDE 1.0] 6.99.2 IDE

Stream Establishment, page 18.

3. The device shall follow IDE TLP rule, according to [PCIe IDE 1.0] 6.99.4 IDE TLPs, page 29.

The device shall use IDE TLP Prefix for all IDE TLPs.

4. The device shall follow a selective IDE stream rule, according to [PCIe IDE 1.0] 6.99.4 IDE

TLPs, page 33. The device shall follow “Table XX – TLP Types for Selective IDE Streams” to

only permit MRd, MRdLk, MWr, CfgRd1, CfgWr1, DMWr, Msg*, MsgD*, Cpl, CplD, CplLk, CplDLk,

FetchAdd, Swap, and CAS. The IORd, IOWr, CfgRd0, and CfgWr0 are not encrypted.

3 TEE-IO Hardware Stack

26 Document Number: 354272-001

5. The device shall follow IDE TLP sub-stream rule, according to [PCIe IDE 1.0] 6.99.5 IDE TLP

Sub-streams, page 38.

6. The device shall follow IDE TLP Aggregation, if it is supported, according to [PCIe IDE 1.0]

6.99.6 IDE TLP Aggregation, page 40.

7. The device shall follow other IDE Rules for Non-Posted IDE Requests, according to [PCIe IDE

1.0] 6.99.8 Other IDE Rules, page 44.

8. The device shall follow other IDE Rules for resets, according to [PCIe IDE 1.0] 6.99.8 Other

IDE Rules, page 44. Conventional Reset or Function Level Reset (FLR) to a function with IDE

shall change to Insecure state. FLR to a function without IDE shall not affect IDE operation.

9. The device shall follow other IDE Rules for Access Control Services (ACS), according to [PCIe

IDE 1.0] 6.99.8 Other IDE Rules, page 44.

10. The device shall follow other IDE Rules for error handling, according to [PCIe IDE 1.0]

6.99.8 Other IDE Rules, page 45. Detecting IDE Check Failed error, MAC check failure,

underflow or overflow of TLP counter shall change to Insecure State.

11. The device shall follow other IDE Rules for power management, according to [PCIe IDE 1.0]

6.99.8 Other IDE Rules, page 46. No_Soft_Reset bit shall be Set. All state related to keys and

counters shall be maintained in D0, D1, D2, and D3hot. They may be maintained in D3cold.

12. The device shall follow other IDE Rules for secure local environment, according to [PCIe

IDE 1.0] 6.99.8 Other IDE Rules, page 46. Attempts to modify IDE registers, BARs, and other

structures that could affect the security or an IDE Stream shall be detected and enter Insecure

state.

13. The device shall implement IDE Extended Capability, according to [PCIe IDE 1.0] 7.9.99 IDE

Extended Capability, page 48.

14. The device shall expose “TEE-IO Supported” in Device Capability Register. [PCIe TDISP 1.0]

6.33.4 IDE TLPs, page 5.

15. The device shall implement bit 7 of Sub-Stream field as Reserved. [PCIe TDISP 1.0] 6.33.4

IDE TLPs, page 5.

16. The device shall follow rule when TEE-IO Supported is set, according to [PCIe TDISP 1.0]

6.33.4 IDE TLPs, page 6.

17. The device shall follow rule for Non-Posted IDE Requests based upon TEE-IO Supported

bit, according to [PCIe TDISP 1.0] 6.33.8 Other IDE Rules, page 7.

3 TEE-IO Hardware Stack

27 Document Number: 354272-001

IDE Stream Precedence

The device shall follow IDE stream precedence rule, according to [PCIe IDE 1.0] 6.99.4 IDE

TLPs, page 37. The rule is summarized as follows:

a. For transmitter:

if (IAAR and IRAR rule hit) {

 Stream ID := corresponding Stream ID

} else if (default Selective IDE Stream is configured) {

 Stream ID := default Selective IDE Stream ID

} else if (Link IDE Stream is enabled) {

 Stream ID := Link IDE Stream ID

} else {

 Stream ID := invalid // Not use IDE-TLP

}

Where IAAR == IDE Address Association Register, IRAR = IDE RID Association Register.

b. For receiver:

Stream ID := Stream ID in the received IDE TLP Prefix

TEE Limited Stream
TEE limited stream is optional. It indicates that only those TLPs that have the T bit Set are

permitted to be associated with this Stream. This is for optimization purpose, because not all

data in TVM requires the protection.

Note: This IDE features requires same capability to be supported and configured on the host

Root Port to function correctly. For more details, please refer to [PCIe IDE 1.0].

Requirement if implemented:

1. If implemented, the device shall follow the description for TEE Limited Stream, according to

[PCIe TDISP 1.0] 7.9.26.5.2: Selective IDE Stream Control Register, page 8.

Partial Header Encryption
Partial header encryption is added in [PCIe 6.0] as an optional feature. It provides the ability to

reduce potential exposure to side-channel attacks by encryption some portions of the Header

3 TEE-IO Hardware Stack

28 Document Number: 354272-001

of an IDE Memory Request while maintaining information that is required for TLP routing and

low-level TLP processing in the clear.

Note: This IDE features requires same capability to be supported and configured on the host

Root Port to function correctly. For more details, please refer to [PCIe IDE 1.0].

Requirement if implemented:

1. If implemented, the device shall follow the description for partial header encryption,

according to [PCIe 6.0] 7.9.26.2 IDE Capability Register, 7.9.26.4.1 Link IDE Stream Control

Register, 7.9.26.5.2 Selective IDE Stream Control Register.

For TDX Connect compatibility, please refer to Appendix A “IDE Stream” section.

TDI TLP Rule
The device function unit may have:

• TDI: A Trusted Device Interface. It may be an entire device, a physical function (PF) or

virtual function (VF). It may be in CONFIG_UNLOCK, CONFIG_LOCK, RUN, or ERROR

state. A TDI shall be isolated from non-TDI and other TDIs by the DSM.

• Non-TDI: A legacy device function unit, which cannot be assigned as a TDI by

definition. It may be a physical function (PF) or virtual function (VF).

• DSM: A device security manager, which is the TEE TCB for all TDIs.

A TDI state machine includes 4 states (see Figure 3-2):

CONFIG_UNLOCKED: This is the initial, default state of a TDI. There is no security property

(confidentiality and optional integrity) that a TDI needs to provide to the TVM data. The DSM

shall not allow interface start.

CONFIG_LOCKED: This is the intermediate transition state from default to RUN. To enter this

state, the VMM should finish configuration, and TSM should explicitly send LOCK_INTERFACE.

The DSM or TDI is expected to clean up and prepare to provide the security property. For

example, all previous MMIO requests or DMA requests should be dropped.

RUN: This is the actual functional state. TVM can send START_INTERFACE to explicitly request

the TDI to enter this state. The TDI can perform trusted MMIO or DMA transaction to

communicate with TVM.

ERROR: This is the error state. When the DSM or TDI detects any change impacting device

configuration or security in CONFIG_LOCKED or RUN state, the TDI shall be changed to ERROR

state. TDI shall not expose any confidential TVM data. TDI may start cleaning up the TVM data.

3 TEE-IO Hardware Stack

29 Document Number: 354272-001

Figure 3-2: TDI State Machine (Source: [PCIe TDISP 1.0])

The host function unit may have

• TEE VM (TVM): A VM requiring the TEE capability. A TVM shall be isolated from VMM,

legacy VM, and other TVM by the TSM.

• Legacy VM: A VM not requiring the TEE capability.

• VMM: A system resource manager for TVM and Legacy VM.

• TSM: A TEE security manager, which is TCB for all TVMs.

The connection between the device and the host:

• TVM <-> TDI: Follow TLP rules for MMIO, DMA, ATS, etc.

• Legacy VM <-> TDI: Not the focus of the TDISP specification. *

• Legacy VM/VMM <-> Non-TDI: Legacy behavior. Out of scope.

• TSM <-> DSM: Follow SPDM, IDE_KM, TDISP protocol.

* NOTE: For Legacy VM <-> TDI, it is permitted for IDE streams established by the TSM to be used

to carry TLPs associated with legacy VMs. [PCIe TDISP 1.0] 11.1 page 14. For a TDI that supports

assignment to Legacy VMs, if a TDI is assigned to a Legacy VM, the VMM assigns the TDI in

CONFIG_UNLOCKED, and the TSM must ensure that the TDI remains in that state unless and

until the TDI is removed from the Legacy VM and prepared for re-assignment to a TDI. [PCIe

TDISP 1.0] 11.1 page 18.

3 TEE-IO Hardware Stack

30 Document Number: 354272-001

According to [PCIe TDISP 1.0], a device implementation may support legacy VM <> TDI. If a TDI

is assigned to a legacy VM, the TDI is allowed to transmit or receive messages (such as MMIO

or DMA) in Non-IDE Stream in CONFIG_UNLOCK state. Once the TDI is asked to transit to

CONFIG_LOCK state, the TDI should drain all pending requests and received data in

CONFIG_UNLOCK state.

In order to facilitate the TLP rule discussion, we define the following terms:

• Bound IDE stream: The IDE stream bound to a TDI. In normal case, it is the default

stream in LOCK_INTERFACE_REQUEST [PCIe TDISP 1.0] 11.3.8. The IDE specification

defined “default stream” in [PCIe IDE 1.0] 7.9.99.5.2 Selective IDE Stream Control

Register. If a device includes multiple TDIs, those TDIs may share the same default

stream. In direct peer to peer (P2P) case, the Bound IDE stream is the P2P stream in

BIND_P2P_STREAM_REQUEST [PCIe TDISP 1.0] 11.3.18.

• Non-Bound IDE Stream: The IDE stream not bound to this TDI.

• Non-IDE Stream: The plaintext TLP (not encrypted).

• TEE-TLP: TLP Bound IDE stream with T=1.

• Non-TEE-TLP: All the other not TEE-TLP, such as TLP Bound IDE stream with T=0,

Non-Bound IDE Stream with T=0 or T=1, or Non-IDE Stream.

NOTE: The “T bit” indicates that the TLP originated from within a trusted execution

environment (TEE). However, there is no bit to indicate if the target is within TEE or non-TEE.

This is a known limitation so far. As such, the device should not use a common shared cache

to store the data, unless the device cache has an attribute to identify if the cache-entry is

private (TEE) or shared (non-TEE).

NOTE: the following rules are only for TDI, but not for non-TDI.

TDI as Completer
Resource definition:

• TEE MMIO (T-MMIO): The TEE memory in the device, read/write from the host, which

must have mechanisms to ensure the confidentiality of TVM data, and optionally

integrity. [PCIe TDISP 1.0] 11.1. page 13. It is NON_TEE_MEM=0 in the TDI report

structure. TEE MMIO is only present when TDI is in CONFIG_LOCK, RUN, or ERROR state.

TEE MMIO does not exist when TDI is in CONFIG_UNLOCK state.

• Non-TEE MMIO (NT-MMIO): The Non-TEE memory in the device, read/write from the

host, which does not have above protection mechanism. It is NON_TEE_MEM=1 in the

TDI report structure.

• CFG: The device configuration space read/write from the host. It is not required that

Configuration Requests to a TDI be secured. [PCIe TDISP 1.0] 11.2. page 20.

Rule definition:

• Success (V): The device shall process and return success completion (SC) TLP for NPR.

3 TEE-IO Hardware Stack

31 Document Number: 354272-001

• Reject (X): The device shall return an Unsupported Request (UR) TLP or drop the

received TLP.

NOTE:

1. "If the result is a determination that the TLP must be rejected, the associated TDI must

transition to ERROR where indicated, but no further error reporting or logging is required to

be performed on that TLP,” [PCIe TDISP 1.0] 11.2. TDISP Rules Page 18. Here the “rejected”

means the “IDE Check Failed” instead of access control rule. “no further error reporting is

required” because there is no trusted way to guarantee that the device error message is

delivered to the TVM. The man-in-the-middle adversary can block or delay the error reporting

regardless of whether it is a hardware mechanism or a software mechanism. Please refer to

Chapter 4, Error Handling Section.

2. “If the result is a determination that the TLP must be rejected, … it is optionally permitted on

a case-by-case basis to handle a Request as an Unsupported Request, and/or handle a

Completion as an Unexpected Completion, or that the TLP be dropped.” [PCIe TDISP 1.0] 11.2.

TDISP Rules Page 18. In the case of rejection, the TLP can be responded with UR/UC or dropped.

Table 3-4, Table 3-5 and Table 3-6 are the rule summary of TDI acting as a Completer,

according to [PCIe TDISP 1.0] 11.2.1 TLP Rules, page 21.

Table 3-4: TEE-MMIO Rule Summary for TDI as Completer

Access Control CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A * T-MMIO (X) T-MMIO (V) T-MMIO (X)

Non-TEE-TLP N/A ** T-MMIO (X) T-MMIO (X) T-MMIO (X)

* By definition, the Bound IDE stream is only known after LOCK_INTERFACE_REQUEST is sent.

As such, there is no TEE-TLP in CONFIG_UNLOCK. All TLPs in CONFIG_UNLOCK are non-TEE-

TLP.

** By definition, the TDI does not provide confidentiality or optional integrity of the TVM data

in CONFIG_UNLOCK, if the TDI is assigned to a legacy VM. As such, the TDI does not have any

TEE-MMIO, because a TDI is not required to protect confidential data placed into it in this

state.

Table 3-5: NON-TEE-MMIO Rule Summary for TDI as Completer

Access Control CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A NT-MMIO (V) NT-MMIO (V) NT-MMIO (V)

Non-TEE-TLP NT-MMIO (V) NT-MMIO (V) NT-MMIO (V) NT-MMIO (V)

3 TEE-IO Hardware Stack

32 Document Number: 354272-001

Table 3-6: CFG Rule Summary for TDI as Completer

Access Control CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A CFG (V) CFG (V) CFG (V)

Non-TEE-TLP CFG (V) CFG (V) CFG (V) CFG (V)

NOTE:

1. TEE MMIO: TEE MMIO is only allowed with bound IDE stream, T=1, and TDI in RUN.

if ((TDI.STATE != RUN) ||

 (TLP.T == 0) ||

 (STREAM_TYPE != IDE_TLP) ||

 (IDE_STREAM_ID != TDISP_BOUND_STREAM_ID) ||

 (TLP.ADDRESS NOT IN STREAM-ASSOCIATION-RANGES[N])) {

 Access = Deny;

} else {

 Access = Allow;

}

2. Non-TEE MMIO: [PCIe TDISP 1.0] mentioned the rule for TDI acting as a Completer:

“Requests targeting device memory received with the T bit Set while in any state other than

RUN must be rejected.”. That rule is superseded by “The TDI’s handling is not modified by

TDISP state for Received Memory Requests targeting MMIO with IS_NON_TEE_MEM Set.”

3. CPL rule: The value of the T bit in the Completion(s) returned by the TDI must match the

value of the T bit in the corresponding Request. [PCIe TDISP 1.0].

4. CFG rule: It is not required that Configuration Requests to a TDI be secured. [PCIe TDISP

1.0] 11.2. page 20. [PCIe IDE 1.0] Table XX–TLP Types for Selective IDE Streams mentions

Type0 is not permitted for selective IDE streams, because we do not expect that will happen. A

proper requester shall always use Type1. An improper requester may use Type0. The device

may choose to accept or reject, but it does not impact security.

TDI as Requester
Resource definition:

• DMA: The host memory-read/write from the device. The device does not know if the

host memory is TEE memory or non-TEE memory, according to [PCIe TDISP 1.0].

3 TEE-IO Hardware Stack

33 Document Number: 354272-001

• MSI: The message signaled interrupt from the device to the host.

• Trusted-MSI (T-MSI): The LOCK_MSIX flag in LOCK_INTERFACE_REQUEST is 1 and

MSIX table is part of locked MMIO_RANGE.

Rule definition:

• Allowed (V): The device can send the TLP.

• Not allowed (X): The device shall not send the TLP. It is DSM/TDI’s responsibility.

Table 3-7, Table 3-8, and Table 3-9 are rule summary of TDI acting as a Requester, according

to [PCIe TDISP 1.0] 11.2.1 TLP Rules, page 20.

Table 3-7: DMA Rule Summary for TDI as Requester

Operation CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A DMA (X) DMA (V) DMA (X)

Non-TEE-TLP DMA (V) ** DMA (X) DMA (X) DMA (X)

** DMA is allowed in CONFIG_UNLOCK, if the TDI is designed to a Legacy VM.

Table 3-8: MSI Rule Summary for TDI as Requester

Operation CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A MSI (X) MSI (X) MSI (X)

Non-TEE-TLP MSI (V) MSI (V) MSI (V) MSI (V)

Table 3-9: Trusted-MSI Rule Summary for TDI as Requester

Operation CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A T-MSI (X) T-MSI (V) T-MSI (X)

Non-TEE-TLP N/A ** T-MSI (X) T-MSI (X) T-MSI (X)

** Trusted-MSI is not applicable, only non-trusted MSI is allowed.

NOTE:

1. DMA rule: DMA is only allowed with bound IDE stream, T=1, and when TDI in RUN.

if (TDI.STATE != RUN) {

 Operation = Deny;

} else {

 Operation = Allow;

 TLP.T = 1;

3 TEE-IO Hardware Stack

34 Document Number: 354272-001

 STREAM_TYPE = IDE_TLP;

 IDE_STREAM_ID = TDISP_BOUND_STREAM_ID;

}

2. CPL rule: For Memory Reads issued by the TDI while in RUN, the corresponding

Completion(s) must be handled normally if and only if the TDI is still in RUN and must

otherwise be rejected. [PCIe TDISP 1.0]. “Still in RUN” means that the TDI shall not change to

ERROR state then back to RUN state again.

 A TDI in RUN must ignore the value of the T bit in Received Completions. [PCIe TDISP 1.0].

The reason is that the host SOC implementation may set T=0 for non-TEE owned shared

memory.

Receipt of a Completion with UR/CA or Completion timeout (following recovery retries) for

request initiated by a TDI in CONFIG_LOCK, RUN (with T=1) indicates occurrence of an

uncorrectable error, TDI must transition to ERROR. [PCIe TDISP 1.0] 11.4.3. Securing

Interconnects.

3. MSI rules: The T-bit must be set according to LOCK_MSIX flag in

LOCK_INTERFACE_REQUEST and MSIX table is part of locked MMIO_RANGE, if TDI is in RUN

state.

if ((TDI.STATE == RUN) &&

(LOCK_MSIX flag == 1) &&

(MSIX table is part of locked MMIO_RANGE)) {

 TLP.T = 1;

} else {

 TLP.T = 0;

}

An MSI with T-bit clear is always allowed in CONFIG_UNLOCK or ERROR state, although it is

not explicit stated in TDISP specification, because there is no security property required.

ATS Rule
The presence of DMA address translation in the host system has certain performance

implications for DMA accesses. To mitigate these impacts, a device may include an address

translation cache (ATC), which is also known as device translation look-aside buffer (Device

TLB). Address translation service (ATS) uses a request-completion protocol between a Device

and a Root Complex (RC) to provide translation services. In addition, a new Address Type (AT)

field is defined within the Memory Read and Memory Write TLP. The new AT field could be

Untranslated, Translation Request, Translated.

3 TEE-IO Hardware Stack

35 Document Number: 354272-001

ATS improves the behavior of DMA based data movement. An associated Page Request

service (PRS) provides additional advantages by allowing DMA operations to be initiated

without requiring that all the data to be moved into or out of system memory be pinned.

Allowing a device to operate more independently (to page fault when it requires memory

resources that are not present) provides a superior level of coupling between device and host.

ATS TLP Type definition:

• Translated read/write: Follow the same rule as Memory read/write for DMA/MMIO.

• Translation Request (TRANS): The translation request from the device Address

Translation Cache (ATC) to the host Translation Agent (TA).

• Translation Completion (TRANS-CPL): The translation completion from the host TA to

the device ATC.

• Invalidate Request (INVAL): The invalidate request from the host TA to the device ATC.

• Invalidate Completion (INVAL-CPL): The invalidate completion from the device ATC to

the host TA.

• Page Request (PAGE): The page request from the device ATC to the host TA.

• PRG Response (PGR-RSP): The PRG response from the host TA to the device ATC.

Table 3-10, Table 3-11, and Table 3-12 are rule summary of ATS TLP, according to [PCIe

TDISP 1.0] 11.4.10, page 53.

Table 3-10: ATS Invalidate Request Rule Summary for TDI as Completer

Access Control CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A INVAL (V) INVAL (V) INVAL (V)

Non-TEE-TLP INVAL (V) INVAL (V) INVAL (V) INVAL (V)

1. INVAL rule: Invalidation Request is allowed in TEE-TLP or Non-TEE-TLP.

2. INVAL-CPL rule: Invalidation Completion must use the same IDE Stream as the Invalidation

Request, and must match the T bit value from the Invalidation Request.

Table 3-11: ATS Translation Request Rule Summary for TDI as Requester

Operation CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A TRANS (X) TRANS (V) TRANS (X)

Non-TEE-TLP TRANS (V) ** TRANS (X) TRANS (X) TRANS (X)

** TRANS is allowed in CONFIG_UNLOCK, if the TDI is designed to a Legacy VM.

Table 3-12: ATS Page Request Rule Summary for TDI as Requester

Operation CONFIG_UNLOCK CONFIG_LOCK RUN ERROR

TEE-TLP N/A PAGE (X) PAGE (V) PAGE (X)

3 TEE-IO Hardware Stack

36 Document Number: 354272-001

Non-TEE-TLP PAGE (V) ** PAGE (X) PAGE (X) PAGE (X)

** PAGE is allowed in CONFIG_UNLOCK, if the TDI is designed to a Legacy VM.

1. TRANS rule: Translation Request is only allowed with T-bit set and in RUN state. Although it

is not explicit stated in TDISP specification, Translation Request is not allowed in other state

(CONFIG_UNLOCK or ERROR) or without T-bit set.

2. TRANS-CPL rule: Translation Completion(s) received with the T bit Clear must transition the

TDI to ERROR.

3. PAGE rule: Page Request is only allowed with T-bit set and in RUN state.

4. PGR-RSP rule: A PRG Response must use the same IDE Stream as the corresponding Page

Request and must have the T bit Set. A violation of this rule must result in the TDI transitioning

to ERROR.

Peer to Peer (P2P)
PCIe peer to peer (P2P) enables two PCIe device endpoints (EPs) to transfer data between

each other without using host memory as a temporary storage. There are two types of P2P.

See figure 3-3.

• Direct P2P: Two endpoints set up a dedicated P2P IDE stream with TDISP

BIND_P2P_STREAM message. This feature requires the ATS is support and enabled for

the device.

• P2P via Root Complex: Two endpoints set up two different IDE streams with Root

Complex. If EP1 needs to send TLP to EP2, Root Complex will decrypt TLP in IDE

stream 1 and encrypt it in IDE stream 2.

Figure 3-3: P2P types

The TLP rule for “P2P via Root Complex” is same as the TLP rule for TEE-MMIO (Table 3-4),

Non-TEE-MMIO (Table 3-5), DMA (Table 3-7).

3 TEE-IO Hardware Stack

37 Document Number: 354272-001

For TDX Connect compatibility, please refer to Appendix A “Access Control in TDX Connect”

section.

TDISP Interoperability with PCIe Capabilities

MSI-X
TDISP provides an optional support for TDIs to lock the MSI-X table the Pending Bit Array

(PBA) in order enable trusted interrupts to TVM sending MSI-X requests using IDE-TLPs.

Requirement if implemented:

1. The device shall expose the MSI-X Capability register to the host.

2. The DSM shall lock the MSI-X table and PBA if indicated by the

LOCK_INTERFACE_REQUEST FLAGS (Bit 2 – LOCK_MSIX).

3. The DSM shall report the MSI-X capability message control register state in TDI Report

MSI_X_MESSAGE_CONTROL, according to [PCIe TDISP 1.0] Table 15 TDI Report Structure,

page 37.

ATS
ATS is an optional feature, this document does not cover TDISP with ATS enabled devices. For

more details, please refer to [PCIe TDISP 1.0].

Direct P2P
TDISP provides an optional mechanism to configure direct TDI P2P instead of using “P2P via

Root Complex”. This document does not cover TDISP with direct P2P enabled devices. For

more details, please refer to [PCIe TDISP 1.0].

PASID
PASID is an optional feature that enables sharing of a single Endpoint device across multiple

processes while providing each process a complete virtual address space. This document

does not cover TDISP with ATS enabled devices. For more details, please refer to [PCIe TDISP

1.0].

LNR
LNR is deprecated in PCRE 6.0, this document does not cover TDISP with LNR enabled

devices. For more details, please refer to [PCIe TDISP 1.0].

3 TEE-IO Hardware Stack

38 Document Number: 354272-001

TPH
TLP Processing Hints (TPH) is an optional feature that provides hints in Request TLP headers

to facilitate optimized processing of Requests that target Memory Space. This document does

not cover TDISP with TPH enabled devices. For more details, please refer to [PCIe TDISP 1.0].

For TDX Connect compatibility, please refer to Appendix A “TDISP” section.

4 Device Security Architecture

39 Document Number: 354272-001

4 Device Security Architecture
This chapter describes the device security architecture requirement.

Resource Isolation and Protection
DSM shall implement access control and isolation mechanisms:

Requirement:

1. The device shall isolate the data for TDI from non-TDI.

2. The device shall isolate the data for one TDI from other TDIs.

3. The device shall scrub the confidential information in case of TDISP STOP_INTERFACE, data

integrity error, conventional reset, function level reset, according to [PCIe TDISP 1.0] 11.3.16.

STOP_INTERFACE_REQUEST, 11.5.6. Data Integrity Errors, 11.4.8. Conventional Reset, 11.4.9.

Function Level Reset.

4. The device should follow good practice including: securing secrets through the use of local

encryption, access control, and/or other mechanisms; ensuring that secure data cannot “leak”

due to errors, power management, or other operations; ensuring that secret keys are never

exposed or stored in non-secure buffers; ensuring that the establishment & management of

TEEs is itself secure, according to [PCIe IDE 1.0] 6.99 Implementation Note.

Address Translation
Device may implement ATS.

Requirement:

1. TEE-I/O capable devices must enforce integrity of the Address Translation Cache (ATC) such

that the translations provided by the Root Complex cannot be modified through untrusted

accesses. [PCIe TDISP 1.0] 11.4.10, page 54.

Device Resource
1. The DSM shall not support I/O resource for TVM, according to [PCIe TDISP 1.0] 11.2 TDISP

Rules, page 20.

Device Identity and Measurement Reporting
DSM shall implement root of trust (ROT) for device attestation.

Requirement:

4 Device Security Architecture

40 Document Number: 354272-001

1. The device shall support device identity and authentication, according to [PCIe TDISP 1.0]

11.4.1 Device Identity and Authentication, page 49.

2. The device shall support firmware and configuration measurements, according to [PCIe

TDISP 1.0] 11.4.2 Firmware and Configuration Measurement, page 49.

3. The DSM shall provide ROT for storage (RTS) to provide the confidentiality for the device

private key.

4. The DSM shall provide ROT for measurement (RTM) to record the measurement data at

runtime.

5. The DSM shall provide ROT for reporting (RTR) to report the measurement data.

6. The device should provision the device certificate at manufacture time. A DICE device shall

generate alias certificate at boot time.

7. The Device vendor should publish the reference integrity manifest (RIM) for attestation. The

RIM may follow IETF CoRIM specification.

Device Firmware Resilience
Usually, the device supports firmware update. The DSM shall implement ROT for resilience.

Requirement:

1. The DSM shall provide ROT for update (RTU) for secure firmware update, including update

image integrity protection and rollback protection, according to [NIST SP 800-193].

2. The DSM shall provide ROT for detection (RTD) for secure boot, including boot image

integrity verification and secure version number (SVN) verification, according to [NIST SP 800-

193].

3. The DSM should provide ROT for recovery (RTRec) to recover the device firmware in case of

verification failure, according to [NIST SP 800-193].

Runtime Firmware Update
Optionally, the device may support runtime update without reset. The capability is controlled

by following fields:

• SPDM 1.2 SessionPolicy.TerminationPolicy: Determine if runtime update will keep

session alive.

• TDISP LOCK_INTERFACE_REQUEST.NO_FW_UPDATE: Determine if update is allowed

in TDISP CONFIG_LOCKED state.

See table 4-1.

4 Device Security Architecture

41 Document Number: 354272-001

Table 4-1: Runtime Firmware Update Summary

SPDM:

TerminationPolicy

TDISP:

NO_FW_UPDATE

Result

0 (No Runtime

Update)

0 (Allow firmware

update if TDISP is in

CONFIG_LOCKED

state)

No Runtime Update.

The update will cause SPDM session

termination. After update, the device will

expect next SPDM message to be

GET_VERSION, and will return

ERROR(RequestResynch) for all other.

0 (No Runtime

Update)

1 (Not allow

firmware update if

TDISP is in

CONFIG_LOCKED

state)

No Runtime Update.

Any update is not allowed if TDISP is in

CONFIG_LOCKED state. The update is

allowed if TDISP is not in CONFIG_LOCKED

state and the update will cause SPDM session

termination.

1 (May support

Runtime Update)

0 (Allow firmware

update if TDISP is in

CONFIG_LOCKED

state)

The device may choose to allow Runtime

Update regardless of the TDISP state.

The update may keep session alive or

terminate. It is the device’s choice based on

the impact of the update.

1 (May support

Runtime Update)

1 (No allow

firmware update if

TDISP is in

CONFIG_LOCKED

state)

The device may choose to allow Runtime

Update if TDISP is not in CONFIG_LOCKED

state.

Any update is not allowed if TDISP is in

CONFIG_LOCKED state.

Requirement:

1. The device shall support SPDM 1.2 SessionPolicy.TerminationPolicy = 1, to keep the SPDM

session alive during runtime update.

2. The device shall keep IDE stream alive during the runtime update.

3. The device shall support TDISP LOCK_INTERFACE_REQUEST.NO_FW_UPDATE = 0, to keep

TDISP alive during the runtime update.

4. The device shall support SPDM_DIGESTS and SPDM_CERTIFICATE command in Session.

5. The device should support SPDM 1.2 MEAS_FRESH_CAP to report the fresh measurement

after the runtime update.

4 Device Security Architecture

42 Document Number: 354272-001

6. The device should support SPDM 1.2, MEASUREMENTS.Param2.content_change detection

to report the atomicity of the measurement reporting.

7. The device should support SPDM 1.2, DMTFSpecMeasurementValueType Mutable Firmware

Security Version Number (SVN).

8. The DICE device shall report the certificate including the new firmware information in

DiceTcbInfo, such as firmware digest and/or SVN.

Secure Interconnects
The device shall support IDE based secure communication with the TSM.

Requirement:

1. The devices must support selective IDE. [PCIe TDISP 1.0] 11.4.3 Secure Interconnects, page

50.

2. The device must implement adequate security measures to prevent leakage of the

encryption key at rest and in use, according to [PCIe TDISP 1.0] 11.4.3 Secure Interconnects,

page 50.

Device Attached Memory
A device may implement device attached memory, which is used to host the TVM data.

Requirement:

1. If device attached memory is supported, the device shall ensure the confidentiality and

optionally integrity of the TVM data stored in the device attached memory, according to [PCIe

TDISP 1.0] 11.4.4 Device Attached Memory, page 50.

TDI Security
The device shall support TDISP protocol to manage TDI state.

Requirement:

1. The device shall follow TDI Security requirement, according to [PCIe TDISP 1.0] 11.4.5 TDI

Security, page 51. The device shall support TDI state (CONFIG_UNLOCK, CONFIG_LOCK, RUN,

ERROR) and IDE Stream state (Insecure, Secure) transition. Any configuration change that

impacts the TDI security properties shall result in the TDI ERROR state and IDE Stream

Insecure state.

Data Integrity Errors
A device may receive a poisoned TLP on an interface in RUN.

4 Device Security Architecture

43 Document Number: 354272-001

Requirement:

1. The device shall handle data integrity error according to [PCIe TDISP 1.0] 11.4.6 Data

Integrity Error, page 52. The device shall change the interface from RUN to ERROR if a

poisoned TLP is received, to prevent bad data consumption and propagation. The device shall

scrub and clear information in such logs and reporting registers (e.g., syndrome) that may

reveal confidential data.

Debug Modes
A device may support multiple debug modes or debug capabilities.

Requirement:

1. The device shall handle the debug mode, according to [PCIe TDISP 1.0] 11.4.7 Debug

Modes, page 52. Debug capabilities must not affect the security of the device, and must not

lead to a compromise of the confidentiality or integrity of the TVM data provided to the

device.

Device Debug Interface
A device may provide debug interface to access low level data.

Requirement:

1. The device shall implement the debug interface without impacting the security properties.

2. The device should report the debug state to the host if the debug mode is enabled or a

debugger is attached. The mechanism may be in SPDM measurement DeviceModeCapabilties

or DiceTcbInfo flags.

Device Reset

Conventional Reset
A conventional reset (cold, warm, or hot) leads to the device changing all its port registers and

state machines to their initialization values, and the TDISP state of all TDIs transitions to

CONFIG_UNLOCKED.

Requirement:

1. The device shall handle the conventional reset, according to [PCIe TDISP 1.0] 11.4.8

Conventional Reset, page 53. The device shall ensure that all TVM data, IDE keys, other

encryption keys (e.g., P2P links, intra-device interconnects, etc.) and SPDM session keys are

4 Device Security Architecture

44 Document Number: 354272-001

cleared and not exposed in conventional reset. The device shall reset the device measurement

registers to their default values in conventional reset.

2. The device shall handle the conventional reset, according to [PCIe IDE 1.0] 6.99.8 Other IDE

Rules. Any Conventional Reset to an Upstream Port or to the Bridge Function of a Downstream

Port must result in all IDE Streams associated with that Function transitioning to the Insecure

state, and all keys must be invalidated and rendered unreadable.

Function Level Reset (FLR)
A device may support function level reset.

Requirement:

1. The device shall handle the Function Level Reset (FLR), according to [PCIe TDISP 1.0] 11.4.9

Function Level Reset, page 53. The device shall ensure that all affected TDI from

CONFIG_LOCKED, RUN state to ERROR state in function level reset. As such, the host needs to

issue STOP_INTERFACE_REQUEST request to clean up the TDI state and scrub TVM

data/secrets.

2. The device shall handle the Function Level Reset (FLR), according to [PCIe IDE 1.0] 6.99.8

Other IDE Rules. Any FLR to a Function containing an IDE Extended Capability must result in all

IDE Streams associated with that Function transitioning to the Insecure state, and all keys

must be invalidated and rendered unreadable. An FLR to a Function that does not contain an

IDE Extended Capability must not affect IDE operation.

Table 4-2 shows examples of the impact of different reset, assuming that Physical Function

FLR (PF-FLR) happens on a function that contains an IDE Extended Capability and Virtual

Function FLR (VF-FLR) happens on a function that does not contains an IDE Extended

Capability.

Table 4-2: Examples of the Impact of Reset

Reset Type VF specific

TDI

Other subordinate

VF TDIs

IDE Stream SPDM Session

Conventional Reset ERROR ERROR Insecure Termination

PF-FLR (with IDE ECAP) ERROR ERROR Insecure No impact

VF-FLR (no IDE ECAP) ERROR No impact No impact No impact

Timing
A device shall follow the timing requirement defined in the standards. See table 4-3.

Table 4-3: Timing requirement summary

Protocol Description

4 Device Security Architecture

45 Document Number: 354272-001

PCI DOE The device shall return DOE response within 1 second, according to [PCIe

DOE 1.0] 6.xx.1 Operation.

SPDM The device shall follow “Timing specification table” and the CTExponent

shall be return via SPDM CAPABILITIES.

IDE 1. The device port shall be able to process IDE TLP within 10ms after

receiving the IDE_KM K_SET_GO (enable or refresh), according to [PCIe IDE

1.0].

2. The device port shall invalidate and render unreadable the key set within

10ms after receiving the IDE_KM K_SET_STOP, according to [PCIe IDE 1.0].

3. When aggregating TLPs, the Transmitter must treat a TLP as the last TLP of

an aggregated unit unless the Transmitter can guarantee that it will transmit

another TLP within the aggregated unit within 1µs.

TDISP The device shall inherit timing requirements from the SPDM.

TLP The device shall follow [PCIe 6.0] 2.8 Completion Timeout Mechanism

Error Handling
A device shall follow the error handling requirement defined in the standards.

Error Trigger
Table 4-4 shows the possible source that triggers the error.

Table 4-4: Error Trigger

Source IDE Insecure TDISP ERROR

DOE Mailbox If DOE mailbox error causes

unrecoverable error and SPDM

session termination, then IDE state

shall be changed to insecure.

If DOE mailbox error causes

unrecoverable error and SPDM

session termination, then TDI state

shall be changed to ERROR.

SPDM Session SPDM session termination shall

cause the IDE state to insecure.

[PCIe TDISP 1.0] 11.4.5. TDI

Security.

If the secure SPDM session that was

used for initial key programming is

closed, any subsequent QUERY

and/or KEY_PROG requests

received through a different

secure SPDM session must first

cause the responder to invalidate

and render unreadable all keys

must for the IDE Stream, then

transition that IDE Stream to the

SPDM session termination shall

cause the TDI state to ERROR. [PCIe

TDISP 1.0] 11.4.5. TDI Security.

4 Device Security Architecture

46 Document Number: 354272-001

Insecure state. [PCIe IDE 1.0] 6.99.3.

IDE KM. Page 24.

TLP /

Configuration

1. Any conventional reset or any

FLR to a function containing an

IDE extended capability must

result in IDE stream to insecure

state. [PCIe IDE 1.0] 6.99.8 Other

IDE Rules.

NOTE: An FLR to a Function that

does not contain an IDE Extended

Capability must not affect IDE

operation.

2. Use of Selective IDE under any

use case where ACS services (or any

other mechanism) blocks or

otherwise terminates IDE TLPs will

result in the associated Selective

IDE Stream going to Insecure. [PCIe

IDE 1.0] 6.99.8 Other IDE Rules.

3. Using the following practices.

[PCIe IDE 1.0] 6.99 Integrity & Data

Encryption (IDE) implementation

note.

3.1. Detecting inappropriate

attempts to reconfigure IDE,

and/or other internal conditions

that could compromise secure data

forcing the Port into Insecure.

3.2. Any change in debug

configuration that could expose

data intended to be secured result

in a transition to Insecure.

1. Following conditions must be

treated as errors, according to [PCIe

TDISP 1.0] 11.2 TDISP Rules page

19.

1.1. Changes to TDI configuration

that affect the configuration or the

security of the TDI. [PCIe TDISP

1.0] 11.2.6. DSM Tracking and

Handling of Locked TDI, 11.4.5.

TDI Security. Refer to Table 2:

Example DSM Tracking and

Handling for Architected Registers.

1.2. Changes to the Requester ID

1.3. Resetting the TDI using a

Function Level Reset.

1.4. Any IDE stream bound to the

TDI transitions to the Insecure

state. [PCIe TDISP 1.0] 11.4.5. TDI

Security.

1.5. Receipt of a poisoned TLP

([PCIE Base] 6.2.3.3 Error

Forwarding) or detecting data

integrity errors in the device for

data associated with that TDI,

where the error is not recoverable.

1.6. Other device specific

conditions or changes in

configuration that affect trust

properties.

2. Receipt of a Completion with

UR/CA or Completion timeout

(following recovery retries) for

request initiated by a TDI in

CONFIG_LOCK, RUN (with T=1)

indicates occurrence of an

uncorrectable error. [PCIe TDISP

1.0] 11.4.3. Securing Interconnects.

3. ATS Error [PCIe TDISP 1.0]

11.4.10

4 Device Security Architecture

47 Document Number: 354272-001

3.1. Translation Completion(s)

received with the T bit Clear, if the

request with T bit set.

3.2. PRG Response received with

the T bit clear, if the request with T

bit set.

Table 4-5 shows the IDE TLP Error. “IDE Check Failed” is a fatal error and will cause the IDE

state to be Insecure. “Misrouted IDE TLP” and “PCRC Check Failed” are non-fatal error and will

not cause an IDE state change.

Table 4-5: IDE TLP Error

IDE Error Error Condition

IDE Check

Failed

1. Selective IDE Stream rules which cause an IDE Check Failed error. [PCIe

IDE 1.0] 6.99.4 IDE TLPs

1.1. Receipt of an IDE TLP associated with a Selective IDE Stream that is

not a permitted TLP Type.

2. Aggregation TLP rules that cause an IDE Check Failed error. [PCIe IDE

1.0] 6.99.6 IDE TLP Aggregation

2.1. If the K bit is to be toggled, it must only be toggled for the first TLP of

an aggregated unit.

2.2. If an IDE TLP with the M bit Clear is received at a Receiver where

Aggregation is not supported, or if nine or more successive TLPs are

received in the Sub-Stream with the M bit Clear.

3. Other rules that cause an IDE Check Failed. [PCIe IDE 1.0] 6.99.8 Other

IDE Rules.

3.1. Received Completion shall use same Stream ID and Same T bit with

NPR.

3.2. Use of mechanisms that result in the blocking or termination of TLPs

must be carefully coordinated with the use of Selective IDE Streams.

Dropping of Selective IDE TLPs.

3.3. Detection following condition:

3.3.1 MAC check failure

3.3.2 underflow of PR-received-counter-NPR/CPL

3.3.3 overflow of PR-received-counter-NPR/CPL

3.3.4. unsupported field in sub-stream identifier. [PCIE Base] 6.33.8 Other

IDE Rules.

Misrouted IDE

TLP

1. Flow-Through selective ID stream rules which cause Misrouted IDE TLP.

[PCIe TDISP 1.0] 6.99.7 Flow-Through Selective IDE Streams

1.1 If an IDE TLP is routed to an Egress Port with the Flow-Through IDE

Stream Enabled bit Clear.

2. Other IDE rules that cause Misrouted IDE TLP. [PCIe TDISP 1.0] 6.99.8

Other IDE Rules

4 Device Security Architecture

48 Document Number: 354272-001

2.1. Receipt of a Link IDE TLP or Selective IDE TLP for which there is not an

associated IDE Stream

2.2. Receipt of a Link IDE TLP by a Switch that targets an Egress Port for

which there is not a Link IDE Stream associated with the same TC and in

the Secure state

PCRC Check

Failed

1. IDE TLP rules that cause PCRC Check Failed. [PCIe TDISP 1.0] 6.99.4 IDE

TLPs

1.1. When PCRC is enabled for an IDE Stream, the PCRC is not present.

1.2. The PCRC must only be checked by the ultimate Receiver of the IDE

TLP including PCRC. A failure of the PCRC check indicates that one or more

bits of the data payload have been corrupted.

Error Notification
Table 4-5 shows the error notification via software protocol.

Table 4-6: Error Notification via Protocol

Source Protocol Error

DOE Message N/A

SPDM SPDM response may return error via SPDM_ERROR.

IDE_KM IDE_KM response may return error via Status Field in IDE_KM KP_ACK,

according to [PCIe IDE 1.0] 6.99.3 IDE Key Management (IDE_KM).

Attempting to configure IDE keys into a sub-stream using different SPDM

sessions is an error and must be rejected. [PCIe TDISP 1.0] 11.4.5. TDI

Security.

TDISP TDISP response may return error via TDISP_ERROR, according to [PCIe

TDISP 1.0] 11.3.8. LOCK_INTERFACE_REQUEST, 11.3.10.

GET_DEVICE_INTERFACE_REPORT, 11.3.12.

GET_DEVICE_INTERFACE_STATE, 11.3.14. START_INTERFACE_REQUEST,

11.3.16. STOP_INTERFACE_REQUEST, 11.3.18.

BIND_P2P_STREAM_REQUEST, 11.3.20. UNBIND_P2P_STREAM_REQUEST,

11.3.22. SET_MMIO_ATTRIBUTE_REQUEST.

TLP TLP may return Unsupported Request (UR) or Unexpected Completion (UC),

according to [PCIE Base] 6.33.8 Other IDE Rules.

The Translation Complete Status field is defined in [PCIE Base] Table 10-2

Translation Completion with No Data Status Codes.

The transaction layer Error is listed at [PCIE Base] Table 6-5 Transaction

Layer Error List.

Table 4-7 shows the error notification via error register.

Table 4-7: Error Notification via Register

Source Register

DOE Error DOE Error (bit 2) is in [PCIe DOE 1.0] 7.9.24.4 DOE Status Register.

4 Device Security Architecture

49 Document Number: 354272-001

IDE Error Link IDE Integrity Check Fail (bit 31) is in [PCIe IDE 1.0] 7.9.99.4.2 Link IDE

Stream Status Register.

Selective IDE Integrity Check Fail (bit 31) is in [PCIe IDE 1.0] 7.9.99.5.3

Selective IDE Stream Status Register.

The Integrity Check Fail is equal to IDE Check Failed. Misrouted IDE TLP or

PCRC Check Failed error shall not cause Integrity Check Fail error bit set.

Advanced

Error

(optional)

Unrecoverable Error Status Register is defined in [PCIe IDE 1.0] 7.8.4

Advanced Error Reporting Extended Capability, including IDE Check Failed (bit

28), Misrouted IDE TLP (bit 29), PCRC Check Failed (bit 30).

NOTE: There is no proactive TDISP error notification via either a hardware or software

mechanism. The reason is that there is no way to guarantee that such proactive notification

will be delivered to a TVM when the error happens, such as an MSI-X interrupt or TDISP error

event message. Even if a device chooses to implement such a notification mechanism, it is not

secured because the man-in-the-middle adversary may block or delay the error notification.

Before the TVM receives such notification, it may already consume the invalid data. As such,

when error happens, the only requirement from the device side is to stop working

immediately.

When TVM performs MMIO_READ action, it will usually get All-1 (such as 0xFF for 8bit reg,

0xFFFF for 16bit reg, or 0xFFFFFFFF for 32-bit reg) if the device is in ERROR state. The best

practice is for the device to design the MMIO register in a way that All-1 can be considered an

error. As such, when TVM gets All-1, it knows that device is in the ERROR state. Also, the TVM

may use GET_DEVICE_INTERFACE_STATE to poll the TDI state to confirm whenever it

suspects TDI being in ERROR state.

4 Device Security Architecture

50 Document Number: 354272-001

Error Recovery
Table 4-8 shows the possible error recovery mechanism.

Table 4-8: Error Recovery

Source Recovery

DOE If DOE Error (bit 2) in DOE Status Register is set, the device shall wait for

host software to set DOE Abort (bit 0) in DOE Control Register to clear the

Error.

SPDM If there is SPDM session error or heartbeat timeout, the device shall

terminate the session and wait for new KEY_EXCHANGE message to set up

a new SPDM session, or terminate the SPDM connection and wait for

GET_VERSION message to set up a new SPDM connection.

IDE 1. Once IDE Check Failed error is detected, the TLP that triggered the error

and all subsequent IDE TLPs received associated with the same IDE Stream

must be discarded, according to [PCIe IDE 1.0] 6.99.8 Other IDE Rules, page

45.

1.1. For Link IDE (TC0/VC0), it will be impossible to communicate with the

device until the device is reset, e.g. using a Secondary Bus Reset (a PCIe Hot

Reset), because the device must reject all subsequent coming TLPs.

1.2. For Selective IDE, if Configuration Requests are not being associated

with the Stream, then it is possible to recover the device by tearing down

the affected TDIs, disabling and then re-enabling the Selective IDE

Stream, and then restarting the TDIs.

2. Misrouted IDE TLP is not a fatal error. The device shall permit continued

operation. [PCIe IDE 1.0] Table 605.

3. PCRC Check Failed is not a fatal error. The device shall permit continued

operation. [PCIe IDE 1.0] Table 605.

TDISP 1. For TDI ERROR, the host can send STOP_INTERFACE_REQUEST to

change the TDI to CONFIG_UNLOCKED.

2. A TDI is permitted to transport TLP messages in ERROR state if and only

if T bit is set, e.g. ATS invalidate. [PCIe TDISP 1.0] 11.2.1 TLP Rules, page

21.

3. A TDI is permitted so that clearing this data be deferred until the

receipt of a STOP_INTERFACE_REQUEST to transition the TDI to

CONFIG_UNLOCKED. [PCIe TDISP 1.0] 11.2.1 TLP Rules, page 19.

4. It is permitted that the TDI transition automatically from ERROR to

CONFIG_UNLOCKED, if and only if the TDI first clears all TVM confidential

data. [PCIe TDISP 1.0] 11.2.1 TLP Rules, page 19.

NOTE: Once TDI is in ERROR state, the TDI shall clear all security related context. Care must be

taken that the Tag in NPR without CPL shall not in the context. The TDI shall keep tracking the

CPL Tag and ensure the same Tag is never reused when the TDI is out of ERROR state to avoid

Tag reuse attack. Alternatively, the TDI may disallow change from ERROR to other state before

4 Device Security Architecture

51 Document Number: 354272-001

the TDI receives a corresponding CPL TLP or CPL timeout. Or the TDI can do reset such as

Function Level Reset (FLR) or convention reset.

5 Summary

52 Document Number: 354272-001

5 Summary
This white paper describes how to build a device to support confidential computing. First, we

provide summary of the secure device interface lifecycle. Then we provide detailed

information on the software communication (DOE, SPDM, IDE_KM, TDISP) and the hardware

communication (link encryption), as well as the device security implementation.

Appendix A: Intel® TDX Connect Interoperability

53 Document Number: 354272-001

Appendix A: Intel® TDX Connect Interoperability
This section describes the features supported in Intel® TDX Connect host architecture and

restrictions that are introduced to the generic device architecture described in the main

portion of this document.

Table A-1 shows the generic terminology mapping for Intel® TDX Connect.

Table A-1: Terminology Mapping for Intel TDX

Term Intel® TDX Connect

TEE Security Manager (TSM) Intel® TDX Module

Intel® TDX Connect TEE-IO provisioning agent (TPA)

TEE Virtual Machine (TVM) Tenant Trust Domain (TD)

In following sections, we will use term “Intel TSM” to indicate the TSM in Intel TDX Connect,

including Intel® TDX Module and Intel® TDX Connect TEE-IO provisioning agent (TPA).

TDX Connect Software Interoperability
This section describes the software stack requirements for device interoperability with the

TDX Connect host.

DOE
The DOE functionality required to be supported by the TDX Connect device is:

• DOE Discovery

• CMA/SPDM

• Secure CMA/SPDM

The following DOE functionality is not supported by the TDX host, and the device shall not use

them for any TDX Connect usages.

• CMA/SPDM with Connection ID

• Secure CMA/SPDM with Connection ID

• Async Message

Configurations

Depending on the device’s architecture and functionality, a device shall implement one or

more DOE mailboxes. The mailboxes may be in the following configurations:

• 1 device -> N functions -> 1 DOE (in function 0 only)

• 1 device -> N functions -> N DOEs

• 1 device -> N functions -> N*M DOEs (each function has M DOEs)

Appendix A: Intel® TDX Connect Interoperability

54 Document Number: 354272-001

The TDX host does not place any restrictions on the number of DOE mailboxes and how they

are associated with the functions other than overall platform capacity.

SPDM
TDX Connect host supports SPDM version 1.2.

The device shall support SPDM version 1.2 or higher. If the device supports a higher version

than 1.2, it shall be able to fall back to using version 1.2 for TDX Connect usages through the

SPDM Get Capabilities mechanics.

The device shall support the SPDM request and response messages in table A-2. “Optional”

means the TDX Connect host may send the message if the device supports the capability. “In

session” means the TDX Connect host needs to send the message in SPDM session. “In/out of

session” means the TDX Connect host needs to send the message in SPDM session and out of

SPDM session.

Table A-2: Supported SPDM Messages

Request Messages Response Messages

GET_VERSION VERSION

GET_CAPABILITIES CAPABILITIES

NEGOTIATE_ALGORITHMS ALGORITHMES

GET_DIGESTS (in/out of session) DIGESTS (in/out of session)

GET_CERTIFICATE (in/out of session) CERTIFICATE (in/out of session)

GET_MEASUREMENTS (in session) MEASUREMENTS (in session)

KEY_EXCHANGE KEY_EXCHANGE_RSP

FINISH FINISH_RSP

HEARTBEAT (optional) HEARTBEAT_ACK (optional)

KEY_UPDATE (optional) KEY_UPDATE_ACK (optional)

END_SESSION END_SESSION_ACK

- ERROR

DOE mappings

SPDM may be mapped to the device/function and DOEs in the following ways.

• 1 device -> N functions -> 1 DOE (in function 0 only) -> 1 SPDM.

• 1 device -> N functions -> N DOEs -> N SPDMs

• 1 device -> N functions -> N DOEs -> 1 SPDM (other N-1 DOE is used for other

purpose)

• 1 device -> N functions -> N*M DOEs (each function has M DOE) -> N SPDMs

VMM will discover and select the proper DOE mailbox one that supports IDE_KM and TDISP.

Then the VMM will ask TPA to setup the SPDM session.

Appendix A: Intel® TDX Connect Interoperability

55 Document Number: 354272-001

Cryptographic algorithms

The TDX Connect host supports the SPDM cryptographic algorithms defined in CMA ECN.

The device may implement any subset of the algorithms governed by those specifications.

Mutual Authentication

The TDX Connect host does not support mutual authentication. The host will not set

MUT_AUTH_CAP. The DSM shall not request mutual authentication.

The device may optionally implement a non-standardized mutual authentication-attestation

method as mentioned in chapter 2, such as RATLS.

Certificate

Intel TSM is the host component that will receive the certificate chain from the device, verify

the signature by using the public key associated with the leaf certificate of the Responder, and

all intermediate public keys within the certificate chain using the root certificate as the trusted

anchor. It will use the public key associated with the leaf certificate to setup the SPDM session.

Intel TSM provides a secure mechanism to pass the entire certificate chain in all slots to the

TVM, so that the TVM can verify its contents and make decision to accept the device using the

TVM’s own policy.

Measurement

Intel TSM will receive the device measurements from the device in the SPDM session.

Intel TSM provides a secure mechanism to pass all measurements received from the device to

the TVM, so that the TVM can verify the device measurements based TVM’s policy.

SPDM Connection and Session

The device may support multiple SPDM connections and multiple SPDM sessions in one

SPDM connection.

• 1 DOE mailbox -> 1 Connection -> 1 Session

• 1 DOE mailbox -> X Connections -> X Sessions

• 1 DOE mailbox -> X Connections -> X*Y Sessions

Intel TSM will only choose 1 SPDM Connection and setup 1 SPDM session.

IDE_KM
The TDX Connect device shall support the IDE_KM defined in [PCIe IDE 1.0].

The device shall support the IDE_KM request and response messages in table A-3.

Table A-3: Supported IDE_KM Messages

Request Messages Response Messages

QUERY QUERY_RESP

Appendix A: Intel® TDX Connect Interoperability

56 Document Number: 354272-001

KEY_PROG KP_ACK

K_SET_GO K_GOSTOP_ACK

K_SET_STOP K_GOSTOP_ACK

Selective IDE Stream Sequence

The TDX Connect host supports the following IDE key management sequence.

• Initial IDE Stream setup. The TDX Connect host SOC only supports the sequence to set

IDE Stream Enable bit for SOC after the IDE key and the IDE key set are programmed

into SOC Root Port and the device.

• IDE Stream Stop. The TDX Connect host SOC only support the sequence to disable IDE

stream Enable bit for device and then for SOC, before send IDE_KM message to the

device.

• IDE Stream Key refresh.

Please refer to Appendix B, IDE Stream section, for an example on how to program keys into

device and start IDE stream.

TDISP
The TDX Connect device shall support [PCIe TDISP 1.0]. That is the only TDISP version

supported by the TDX Connect host.

The device shall support the TDISP request and response messages in table A-4.

Table A-4: Supported TDISP Messages

Request Messages Response Messages

GET_TDISP_VERSION TDISP_VERSION

GET_TDISP_CAPABILITIES TDISP_CAPABILITIES

LOCK_INTERFACE_REQUEST LOCK_INTERFACE_RESPONSE

GET_DEVICE_INTERFACE_REPORT INTERFACE_REPORT

GET_DEVICE_INTERFACE_STATE GET_DEVICE_INTERFACE_STATE

START_INTERFACE_REQUEST START_INTERFACE_RESPONSE

STOP_INTERFACE_REQUEST STOP_INTERFACE_RESPONSE

- TDISP_ERROR

Intel TSM only support above TDISP mandatory messages in Table A-4.

Device Address Width

The TDX Connect compliant device’s address width must be at least 52 bits.

Appendix A: Intel® TDX Connect Interoperability

57 Document Number: 354272-001

The device reports the address width thru the TDISP GET_TDISP_CAPABILITIES exchange.

Intel TSM will reject devices that do not support at least 52 bits.

TDI Report Structure

Once the device returns TDI Report structure to the host. The host software should check the

TDI report to decide if the device configuration is acceptable.

Intel TSM will perform basic TSM capability check for the TD Report Structure. See Table A-5.

Table A-5: Intel TSM Capability Check for TDI Report

TDI Report Structure Field Intel TSM Capability

INTERFACE_INFO:BIT0

(Firmware update not allowed in CONFIG_LOCKED or RUN)

Ignored

INTERFACE_INFO:BIT1

(TDI generates DMA requests without PASID)

Must be 1

INTERFACE_INFO:BIT2

(TDI generates DMA requests with PASID)

Must be 0

INTERFACE_INFO:BIT3

(ATS supported and enabled for the TDI)

Must be 0

INTERFACE_INFO:BIT4

(PRS supported and enabled for the TDI)

Must be 0

MSI_X_MESSAGE_ CONTROL Must be 0

LNR_CONTROL Must be 0

TPH_CONTROL Must be 0

MMIO_RANGE_COUNT Ignored

MMIO_RANGE Ignored

DEVICE_SPECIFIC_INFO_LEN Ignored

DEVICE_SPECIFIC_INFO Ignored

The TVM should perform policy check. For example, if firmware update is allowed in

CONFIG_LOCKED or RUN state.

The TDX Connect compliant device shall follow the TSM capability to return the TDI report

structure.

TDX Connect Hardware Interoperability
This section describes the hardware stack requirements for device interoperability with the

TDX Connect host.

IDE Stream
TDX Connect compliant host SOC only supports PCI Express IDE and not CXL IDE.

Appendix A: Intel® TDX Connect Interoperability

58 Document Number: 354272-001

The TDX Connect compliant device shall follow the PCI Express device requirements for IDE.

Selective IDE Stream Support

The TDX Connect host SOC only supports selective IDE streams. The SOC does not support

Selective IDE for Configuration Requests Enable.

The TDX Connect device shall only use selective IDE streams to communicate with TDX

Connect host without Configuration Requests Enable.

Number of Selective IDE Streams Supported

The TDX Connect host supports a total of up to 4 IDE streams per Root-Complex. The

actual number of IDE stream register blocks per Root Port (RP) depends on per RP

bifurcation as defined in the following table.

The device can support 1~4 Selective IDE streams depending on the interface as defined

in the table A-6.

Table A-6: number of IDE stream register blocks per Root Port

Bifurcation Selective IDE Register Blocks Link IDE Register Blocks

1x16 4 1

2x8 3 1

4x4 1 1

8x2 N/A N/A

16x1 N/A N/A

The TDX Connect host only supports 1 IDE Address Association Register block and 1 IDE RID

Association Register block per each selective IDE stream.

TLP MAC Aggregation

The TDX Connect host SOC does not support TLP MAC aggregation. Intel TSM will always

select the No Aggregation mode.

The TDX Connect device shall not indicate IDE TLP aggregation capability in the IDE Extended

capability register.

IDE Support for TEE-IO

The TDX Connect host SOC Root Port IDE is TEE-IO capable. However, it does not expose the

TEE-IO Supported Bit in IDE Device Capability register in [PCIe TDISP 1.0].

Intel TSM requires the software to enumerate TEE-IO support and enable it using Intel TSM

host VMM interface.

TEE Limited Stream

The TDX Connect host SOC does not support TEE Limited Stream.

Appendix A: Intel® TDX Connect Interoperability

59 Document Number: 354272-001

The TDX Connect device shall not indicate support for TEE Limited Stream capability in the

IDE Extended capability register. Both TLPs with the T bit set and TLPs with the T bit not set

are allowed to be associated with the selective ID stream.

Partial Header Encryption

The TDX Connect host SOC does not support Partial Header Encryption.

The TDX Connect device shall not enable Partial Header Encryption.

TDISP
The TDX Connect device shall support [PCIe TDISP 1.0]. That is the only TDISP version

supported by the TDX Connect host.

Access Control in TDX Connect

The Intel TSM does not have knowledge on the device’s TDI state, because Intel TSM cannot

guarantee how the DSM does the transition. A TDI may transition to the ERROR state directly if

the DSM detects a security violation or function level reset (FLR). A TDI may transit to

CONFIG_UNLOCKED in case of conventional reset. A TDI may automatically transit from

ERROR to CONFIG_UNLOCKED if the TDI clears all TVM confidential data, according to [PCIe

TDISP 1.0] page 19.

MMIO Access Control

Intel TSM does not have knowledge on which device MMIO region is TEE-MMIO or Non-TEE-

MMIO. The device will return TEE-MMIO information via INTERFACE_REPORT. Intel TSM does

not parse the information but passes it to the TVM directly. As such, we need define the MMIO

resource in a different way in TDX Connect host.

MMIO Resource definition:

• Private MMIO: The MMIO range whose GPA.S = 0 and HPA TDX HKID is the TD private

HKID. In Intel TDX Connect architecture, the private MMIO can only be high MMIO

whose address is above 4GB (MMIO-H) and not PCI Express configuration space (CFG).

The low MMIO range whose address is below 4GB (MMIO-L) or CFG cannot be private

MMIO. Private MMIO access is only allowed in TEE-TLP.

• Shared MMIO: All other MMIO which is not private MMIO, including PCI Express

configuration space. Shared MMIO access is only allowed in Non-TEE-TLP.

Role and Responsibility:

• VMM is the resource manager. VMM should allocate MMIO region and assign them to

the devices.

• TVM is the policy maker. TVM should parse the TEE-MMIO range from

INTERFACE_REPORT and fully understand which MMIO is TEE-MMIO and which is

Appendix A: Intel® TDX Connect Interoperability

60 Document Number: 354272-001

Non-TEE-MMIO. The TVM shall accept the private GPA mapping from VMM according

to the reported TEE-MMIO range.

• Intel TSM is the policy enforcer. Intel TSM provides API (TDG.MMIO.ACCEPT) for the

TVM to let TVM accept the TEE-MMIO mapped by VMM as private GPA. Intel TSM will

ensure that the Private GPA access uses TEE-TLP and shared GPA access uses Non-

TEE-TLP. Intel TSM ensures the TEE-MMIO is mapped as private GPA before allowing

the DSM to transit to RUN state. Since only MMIO-H can be private memory, Intel TSM

will reject the private MMIO map request for MMIO-L or CFG.

The following table A-7 shows the MMIO Access Rules for TDX Connect host as Requester.

For TEE-TLP, Intel TSM will ensure that only TVM (as TDI owner) can generate such access.

Table A-7: MMIO Rule for TDX Connect host as Requester

Operation TEE-TLP (Private GPA access) Non-TEE-TLP (Shared GPA access)

TEE-MMIO TEE-MMIO (V) TEE-MMIO (X) *

Non-TEE-MMIO Non-TEE-MMIO (V) ** Non-TEE-MMIO (V)

* This is rejected by DSM. See Table 3-4.

** A TVM may choose to use TEE-TLP for Non-TEE-MMIO access. In this case, the TVM owner

should be aware that the private GPA usage with TEE-TLP cannot guarantee the data

security because DSM has no responsibility to protect the data in Non-TEE-MMIO. The TVM

owner shall still treat the Non-TEE-MMIO data from the device as untrusted data and shall not

store any confidential data to Non-TEE-MMIO region, even if the Non-TEE-MMIO is mapped to

private GPA.

NOTE:

1. The device shall expose all TEE MMIO resources using 64-bit BARs.

2. The device shall enforce that IDE Selective Stream bound to TDI and TDI TEE MMIO ranges

are configured to MMIO-H. Note that this restriction does not apply to Non-TEE-MMIO.

3. The device shall treat any TEE-MMIO BAR re-programming as an error when the TDI is in

CONFIG_LOCKED state.

Figure A-1 shows the trusted MMIO flow initiated from host TEE to the device. Please refer to

[Intel TDX Connect] for more detail.

Appendix A: Intel® TDX Connect Interoperability

61 Document Number: 354272-001

Figure A-1: Trusted MMIO Flow

DMA Access Control

The memory resource in TDX Connect host is defined as following:

• Private Memory: The physical memory range whose GPA.S = 0 with private HKID. It is

TEE memory in TDX Connect host.

• Shared Memory: All other memory which is not private memory. It is Non-TEE memory

in TDX Connect host.

Note: The device does not know if the host memory is private memory or shared memory,

according to [PCIe TDISP 1.0].

Role and Responsibility:

Appendix A: Intel® TDX Connect Interoperability

62 Document Number: 354272-001

• TVM is the policy maker. TVM may choose to change the shared memory region. TVM

shall clear the secret in the private memory before transiting it to shared memory. TVM

shall accept the memory configuration and IOMMU configuration from VMM.

• Intel TSM is the policy enforcer. Intel TSM provides API (TDG.DMAR.ACCEPT) for the

TVM to let TVM accept the Intel IOMMU (VT-d) configuration. While a TDI is in RUN

state, the TSM must pin the DMA page and ensure the DMA cannot be blocked by

the VMM. Otherwise, the VMM may block the DMA page from being accessed by the

TDI. The DSM or TDI cannot know that a DMA Write TPL is dropped, because DMA

Write TPL is PR without CPL.

The following table A-8 shows the DMA Rules for TDX Connect host as Completer.

Table A-8: DMA Rule for TDX Connect host as Completer

Access Control TEE-TLP Non-TEE-TLP

Private Memory Private Memory (V) Private Memory (X) *

Shared Memory Shared Memory (V) Shared Memory (V)

* It is rejected by the TDX Connect host SOC. TVM defines private memory range. Intel TSM

enforces the configuration in TDX Connect host SOC with Intel IOMMU.

Note: Intel TDX Connect SOC supports “P2P via Root Complex”. In this case, Private Memory

means the TEE-MMIO on the target device. Shared Memory means the Non-TEE-MMIO on the

target device.

Appendix A: Intel® TDX Connect Interoperability

63 Document Number: 354272-001

Figure A-2 shows the trusted DMA flow initiated from the device to the host. Please refer to

[Intel TDX Connect] for more detail.

Figure A-2: Trusted DMA Flow

MSI-X

The TDX Connect host does not support Trusted MSI.

The device must not use MSI/X requests for TEE-IO transactions.

The device must not set the MSI/X locking flag as part as device interface TDISP lock request.

The device shall clear MSI_X_MESSAGE_CONTROL in TDI Report Structure.

Appendix A: Intel® TDX Connect Interoperability

64 Document Number: 354272-001

ATS

The TDX Connect host does not support ATS.

The device must not use ATS requests for TEE-IO transactions. The device shall not generate

Translation Request, Translated Request, or Page Requests on TDIs. During TDI configuration

the device could either disable ATS for the specific TDI or it can be turned off globally for the

entire device.

The device shall indicate ATS is not supported and enabled in the TDI Report Structure.

PRS

The TDX Connect host does not support PRS.

The device must not use PRS requests for TEE-IO transactions. During TDI configuration it is

recommended to disable PRS.

The device shall indicate PRS is not supported and enabled in the TDI Report Structure.

Peer to Peer (P2P)

Direct P2P

TDX Connect host SOC does not support Direct P2P, because ATS is not supported, and host

SOC does not support setting P2P IDE Selective Streams required for Direct P2P.

The TDX Connect device shall not generate any direct P2P messages.

P2P via Root Complex

TDX Connect host SOC supports P2P via Root Complex.

The device may send and handle trusted TLPs only via the Root-Complex IOMMU in TDX

Connect CPU host.

PASID

The TDX Connect host does not support PASID. The device must not be configured to enable

PASID on TDIs.

The device and its hosted TDIs must not generate or expect TLP with PASID for IDE TLP with T

bit Set.

The device shall indicate that PASID is not supported and enabled in the TDI Report Structure.

Shared Virtual Memory (SVM)

The TDX Connect host does not support Shared Virtual Memory (SVM), also known as Shared

Virtual Addressing. SVM requires PRS and PASID support. PRS and PASID are not useable

with the TDX Connect host.

The TDX Connect host’s Trusted IOMMU engine, Intel VT-d, does not support first stage

translation which is required for SVM.

Appendix A: Intel® TDX Connect Interoperability

65 Document Number: 354272-001

SVM should not be enabled for TDX Connect usages.

LNR

The TDX Connect host SOC does not support Lightweight Notification (LN) Protocol. LN has

been deprecated from [PCIe 6.0]

The device should not implement the deprecated Lightweight Notification (LN) protocol, I.e.,

issue LN Reads, LN Completions, and LN Writes or generate LN metadata.

The device shall clear LNR_CONTROL in the TDI Report Structure to indicate it is not

supported.

TPH

The TDX Connect host SOC does not support TPH. The TDX host does not support MSI-X

table locking which is a requirement for TPH support in [PCIe TDISP 1.0].

The device shall set the “TPH Completer Supported” field in the “Device Capabilities 2

register” to “TPH and Extended TPH Completer not supported”. The device shall clear

TPH_CONTROL in the TDI Report Structure.

Appendix B: Secure Device Interface Lifecycle Example

66 Document Number: 354272-001

Appendix B: Secure Device Interface Lifecycle

Example
This section provides more detail SPDM management, IDE stream management and TDI

lifecycle management flow as example.

SPDM Management

SPDM Session Setup
In order to use the device, VMM need invoke TSM to establish SPDM session with the device.

Table B-1: SPDM Session Setup Example

Step Action Description

1 VMM checks device

capability.

VMM reads device PCI DOE capability and IDE capability.

VMM uses DOE message DISCOVERY to get the DOE

capability.

2 VMM invokes TSM

to establish SPDM

connection.

TSM sends SPDM messages including GET_VERSION,

GET_CAPABILITIES, NEGOTIATE_ALGORITHMS, and

processes the responses.

3 VMM invokes TSM

to establish SPDM

session.

TSM sends SPDM messages including

GET_CERTIFICATE(slot=0), KEY_EXCHANGE, FINISH, and

processes the responses.

4 VMM invokes TSM

to collect device

certificates and

measurements from

device.

TSM sends SPDM messages including

GET_CERTIFICATE(slot=1~7), GET_MEASURMEMENT in

SPDM session and processes the responses.

SPDM Session Termination
If all TDIs in a device are stopped, the VMM can terminate the SPDM session with the device.

Table B-2: SPDM Session Termination Example

Step Action Description

1 VMM may ask TSM

to terminate the

SPDM session.

VMM invokes TSM to send SPDM message - END_SESSION

and processes the responses.

Appendix B: Secure Device Interface Lifecycle Example

67 Document Number: 354272-001

SPDM Session Heartbeat
The VMM should calculate the time for the SPDM session and invoke the TSM to send

heartbeat before the session timeout.

Table B-3: SPDM Session Heartbeat Example

Step Action Description

1 VMM may ask TSM

to maintain the

SPDM session at

runtime, with

heartbeat.

TSM sends SPDM messages such as HEARTBEAT to keep

SPDM session alive.

SPDM Session Key Update
The VMM should invoke TSM to perform Key Update before the session sequence number

overflows. The TSM shall detect the sequence number overflow and stop the session

immediately if that happens in either direction.

Table B-4: SPDM Session Key Update Example

Step Action Description

1 VMM may ask TSM

to maintain the

SPDM session at

runtime, with key

update.

TSM sends SPDM messages such as KEY_UPDATE to keep

SPDM session alive.

Device Information Recollection
If the device supports runtime update, the TVM may want to recollect the device certificates

and measurements information to know if the device is kept up to date.

Table B-5: SPDM Device Information Recollection Example

Step Action Description

1 TVM may ask TSM

to recollect the

device certificates

and measurements

TSM sends SPDM message – GET_CERTIFICATE and

GET_MESUREMENT again in the SPDM session and returns

information to TVM.

TVM can verify the certificates and measurements again

according to the device attestation policy.

Appendix B: Secure Device Interface Lifecycle Example

68 Document Number: 354272-001

IDE Stream Management

IDE Stream Setup
The host software may use following sequence in Table 1-7 to start IDE stream with the

device. For host SOC, we use Intel Root Complex as example [Intel RC IDE].

If a step includes the actions for both the host SOC and the device, then the actions for the

host SOC and the device can be in any order.

Note: This is not the only sequence to start IDE stream. This is one possible sequence to

support both link IDE stream and selective IDE stream.

Table B-6: IDE Stream Setup Example

Step To host SOC To device Comment

1 Detect the IDE capability. Detect the IDE capability. Stop if no capability.

2 Ensure IDE is disabled. Ensure IDE is disabled. This is to avoid confusion

with IDE Stream Key

Refresh.

3 Enable device’s interrupt,

if needed.

It is for DOE message.

4 Establish SPDM session It is for IDE_KM messages

and TDISP messages later.

5 Program IDE key to SOC

key programming

registers.

Send IDE_KM message –

KEY_PROG and process

the KP_ACK response.

The KEY_PROG is for each

IDE sub-stream in (PR, NPR,

CPL) and direction in (Rx,

Tx).

Now the IDE stream is in ready sub-state.

6 Program IDE key set for

SOC in Rx and Tx.

Send IDE_KM message –

K_SET_GO and process

the K_GOSTOP_ACK

response in Rx and Tx.

The K_SET_GO is for each

IDE sub-stream in (PR, NPR,

CPL) and direction in (Rx,

Tx).

7 Do necessary action to

ensure the device will not

initiate IDE TLPs before

the host SOC is ready. *

For example: Disable

device’s capability to

generate asynchronous TLP.

E.g. BusMasterEnable (BME),

InterruptEnable.

8 Set IDE Stream Enable bit

for the device and check

Status bit.

The port must return the

configuration completion as

a Non-IDE TLP, then trigger

the start of IDE. [PCIe IDE

1.0] 6.99.3 IDE Key

Management (IDE_KM) Page

24.

Appendix B: Secure Device Interface Lifecycle Example

69 Document Number: 354272-001

Now the device port is ready to receive IDE TLP. The device port shall continue to accept

Non-IDE TLPs until it receives an IDE TLP. [PCIe IDE 1.0] 6.99.4 IDE TLPs Page 36.

9 Set IDE Stream Enable

bit for SOC

Now both sides can use IDE-TLP to transmit and receive. The IDE stream is in Secure state.

10 Re-enable device

capability to initiate IDE

TLPs, if it is disabled.

For example, BME,

InterruptEnable.

NOTE:

1. In link IDE stream use case, step 8 must be prior to step 9. If we put step 9 before step 8, the

host SOC would send an IDE-TLP for PCI CFG cycle to the device to set IDE Stream Enable bit

before the device is ready to receive an IDE-TLP. The consequence is that the device will reject

this IDE-TLP, and there is no way to enable the link IDE stream. This is not applicable to

selective IDE if the Selective IDE for Configuration Requests Enable bit is cleared.

2. Step 7 is introduced according to [PCIe IDE 1.0] 6.99.3 IDE Key Management (IDE_KM) Page

24. “System software must ensure that the Partner Ports initiate IDE TLPs sequenced

appropriately so that a Port will not receive an IDE TLP before the Enable bit has been set.”

Otherwise, the device might send an IDE-TLP for the interrupt to the host SOC before the host

SOC is ready to receive an IDE-TLP. The consequence is that the host SOC will reject this IDE-

TLP and lose the interrupt.

Software shall not enable device Tx direction (in step 6) after step 9, because the device shall

return the IDE-TLP Completion for the IDE-TLP Non-Posted Request from the host. Otherwise,

it will cause IDE Check Failed error. [PCIe IDE 1.0] 6.99.8 Other IDE Rules Page 46.

3. After step 8, the device may still receive Non-IDE TLP until the first IDE TLP. However, if the

IDE TLP is Non-Posted Request, then the Completion shall use the same Stream ID and same

T bit value. [PCIe IDE 1.0] 6.99.8 Other IDE Rules Page 46. If the device returns Completion

with IDE-TLP, the host is not ready yet and will reject such TLP.

IDE Stream Stop
The host software may use following sequence in Table 1-8 to stop IDE stream with the

device.

Table B-7: IDE Stream Stop Example

Step To host SOC To device Comment

1 Clear IDE Stream Enable

bit for the device and

check Status bit.

The port must return the

configuration completion as

an IDE TLP, then stop IDE.

[PCIe IDE 1.0] 6.99.3 IDE

Appendix B: Secure Device Interface Lifecycle Example

70 Document Number: 354272-001

Key Management (IDE_KM)

Page 24.

Now the device shall only use Non-IDE-TLP to transmit or receive TLPs. The IDE stream is in

Insecure state. The host SOC still has IDE enabled. If the host uses IDE-TLP to communicate

with the device, the device will reject.

2 Clear IDE Stream Enable

bit for SOC.

Now both sides shall use Non-IDE-TLP to transmit or receive.

3 (Optionally) Send IDE_KM

message – K_SET_STOP

and process the

K_GOSTOP_ACK

response.

The K_SET_STOP is for each

IDE sub-stream in (PR, NPR,

CPL) and direction in (Rx,

Tx).

NOTE:

1. In link IDE stream use case, step 1 must be prior to step 2. If we put step 2 before step 1, the

host SOC would send a Non-IDE-TLP for PCI CFG cycle to the device to clear IDE Stream

Enable bit, but the device can only accept an IDE-TLP. The consequence is that the device will

reject this Non-IDE-TLP, and there is no way to disable the link IDE stream gracefully.

2. Once the IDE stream is disabled in step 1, the device can only send Non-IDE-TLP. If the

device needs to generate an interrupt before step 2, the interrupt will be lost in link IDE

stream use case.

IDE Stream Key Refresh
The host software may use following sequence in Table 1-9 to refresh IDE keys with the

device.

Table B-8: IDE Stream Key Refresh Example

Step To host SOC To device Comment

1 Ensure IDE is enabled. Ensure IDE is enabled. This is to avoid confusion

with IDE Stream Start.

2 Program new IDE key to

SOC key programming

registers with new key

set.

Send IDE_KM message –

KEY_PROG and process

the KP_ACK response with

new key set.

The KEY_PROG is for each

IDE sub-stream in (PR, NPR,

CPL) and direction in (Rx,

Tx).

3 Trigger new IDE key set

for SOC in Rx direction.

Send IDE_KM message –

K_SET_GO and process

the K_GOSTOP_ACK

response with new key set

in Rx direction.

The K_SET_GO is for each

IDE sub-stream in (PR, NPR,

CPL) and direction in (Rx).

Appendix B: Secure Device Interface Lifecycle Example

71 Document Number: 354272-001

Now SOC and device still use old keys for transmit and receive, because the port shall

continue to accept IDE TLPs using the established key set until it receives an IDE TLP using

the new key set. [PCIe IDE 1.0] 6.99.3 IDE Key Management (IDE_KM) Page 23.

4 Trigger new IDE key set

for SOC in Tx direction.

Send IDE_KM message –

K_SET_GO and process

the K_GOSTOP_ACK

response with new key set

in Tx direction.

The K_SET_GO is for each

IDE sub-stream in (PR, NPR,

CPL) and direction in (Tx).

Now SOC and device will use new keys for transmit and receive.

The port shall be ready to use the new key set no more than 10ms after the receipt of the

K_SET_GO. The old keys shall be invalidated and never be used, if the port receives IDE TLP

with new key. [PCIe IDE 1.0] 6.99.3 IDE Key Management (IDE_KM) Page 23.

NOTE:

According to [PCIe IDE 1.0] 6.99.3 IDE Key Management (IDE_KM) Page 23, “The agent

implementing the Requester role for IDE_KM must send K_SET_GO commands to enable the

Receivers at both IDE Partner Ports, and then send K_SET_GO commands to enable the

Transmitters at both IDE Partner Ports.”

TDI Lifecycle Management

TDI Assignment

The VMM follows the above software flow to initialize the device resource and assign to

TEE. There are two resource configuration models:

• Static Configuration Model: VMM allocates resource when the TDI is initialized and

hopes the TEE can accept the resource later.

• Lazy Configuration Model: VMM does not allocate resource for the TDI until the TEE

starts to accept the configuration.

Table B-9: TDI Assignment Example

Step Action Description

1 VMM invokes TSM

to negotiate with

DSM.

TSM sends TDISP messages including

TDISP_GET_VERSION, TDISP_GET_CAPABILITIES, and

processes the responses.

2 VMM creates device

interface context
VMM creates the device interface context for the TDI in

TDISP CONFIG_UNLOCKED state.

Appendix B: Secure Device Interface Lifecycle Example

72 Document Number: 354272-001

and configures the

TDI.

VMM allocates MMIO resources for the device.

In static configuration model, VMM builds the trusted

DMA table between the TDI and the TVM private memory.

3 VMM invokes TSM

to move it to TDISP

CONFIG_LOCKED

state.

TSM sends TDISP message – LOCK_INTERFACE_REQUEST

and processes the response.

4 VMM assigns TDI to

TVM.

VMM exposes the device interface to a TVM, for example,

PCI Express enumeration.

TVM gets the TDI associated device interface handle from

the VMM.

5 TVM gets the device

certificates and

measurements, then

TVM verifies the

information.

TVM gets device SPDM certificates and SPDM

measurements.

TVM device verifier should verify the certificates and the

measurements according to the device attestation policy

(policy definition is out of scope of this document).

Finally, TVM calls TSM to accept the device.

4 TVM gets device

interface report and

verifies it.

TVM invokes TSM to send TDISP message –

GET_DEVICE_INTERFACE_REPORT, then get the response.

TVM verifies the fields in the device interface report, such

as if firmware update is permitted, if TDI generates DMA

request with or without PASID, etc.

5 TVM accepts the

MMIO and DMA

mappings in the

report.

TVM accepts all device MMIO pages described in all

MMIO_RANGEs in the report. TVM accepts the DMAR

information.

In lazy configuration model, VMM will get an exception

when TVM performs the accept, then the VMM can add

those resources and they can be accepted by TVM.

6 TVM calls TSM and

VMM to move the

TDI into TDISP RUN

state.

TVM invokes TSM to send and receive TDISP message –

START_INTERFACE_REQUEST, then get the response.

7 TVM pins/unpins

private GPA pages

as part as DMA

allocate/free.

TVM may invoke VMM to ask DMA paging, if the paging is

not requested before.

Then TVM can accept the DMA paging. After this step, the

TVM can perform trusted DMA and MMIO access directly

to the TDI.

Appendix B: Secure Device Interface Lifecycle Example

73 Document Number: 354272-001

TDI Teardown
If a TDI or a device is no longer needed, the VMM may need to stop the TDI or stop the device.

There are two possible teardown models:

• TVM initiated teardown model: A TVM can actively teardown a TDI. For example, after

a TVM performs device information recollection, the TVM does not want to trust the

TDI anymore because its version is lower than expected. Or a TVM wants to let the

orchestrator initiate a device runtime update. In this mode, the TVM needs to notify

VMM to stop the TDI.

• VMM initiated teardown mode: If TVM does not teardown the TDI, the VMM needs to

ensure that the TDI is stopped gracefully after the TVM itself goes through teardown

mode.

Table B-10: TDI Teardown Example

Step Action Description

1 TVM asks VMM to

stop the TDI.

(Optional, only in

TVM initiated

teardown model)

The TVM may notify VMM to stop the TDI.

After the VMM returns the VMCALL, the TVM may check

TDI state to see if it is changed to TDISP

CONFIG_UNLOCKED.

Following steps are common for both TVM initiated and

VMM initiated TDI stop.

2 VMM moves the TDI

to

CONFIG_UNLOCKED

state.

VMM invokes TSM to generate TDISP message –

STOP_INTERFACE_REQUEST and process the response.

3 VMM removes DMA

pages and MMIO

pages.

VMM removes entries in IOMMU’s DMA remapping

structure.

VMM blocks MMIO pages, invalidates the IOTLB and

unmaps MMIO pages from a TVM.

References

74 Document Number: 354272-001

References

Standards
[SPDM 1.2] DMTF, DSP0274 - Secure Protocol and Data Model, Version 1.2.1, June 2022,

https://www.dmtf.org/dsp/DSP0274

[Secured SPDM 1.1] DMTF, DSP0277 - Secured Messages Using SPDM, Version 1.1, May 2022,

https://www.dmtf.org/dsp/DSP0277

[SPDM WP 1.1] DMTF, DSP2058 - Security Protocol and Data Model (SPDM) Architecture

White Paper, Version 1.1, Feb 2022, https://www.dmtf.org/dsp/DSP2058

[SPDM Val] DMTF, IS0023 - SPDM Conformance Test Suite Guidance,

https://www.dmtf.org/dsp/DSP-IS0023

[PCIe 6.0] PCI-SIG, PCI Express Base Specification 6.0.1, Version 1.0, August 2022,

https://members.pcisig.com/wg/PCI-SIG/document/18363

[PCIe DOE 1.0] PCI-SIG, Data Object Exchange (DOE) 1.0 ECN, March 2020,

https://members.pcisig.com/wg/PCI-SIG/document/14143 or [PCIe 6.0] Section 6.30 – Data

Object Exchange (DOE)

[PCIe DOE 1.1] PCI-SIG, Data Object Exchange (DOE) 1.1 ECN, September 2022,

https://members.pcisig.com/wg/PCI-SIG/document/18483

[PCIe CMA 1.0] PCI-SIG, Component Measurement and Authentication (CMA) 1.0 ECN, April

2020, https://members.pcisig.com/wg/PCI-SIG/document/14236 or [PCIe 6.0] Section 6.31 –

Component Measurement and Authentication (CMA)

[PCIe IDE 1.0] PCI-SIG, Integrity, and Data Encryption (IDE) 1.0.A ECN, October 2021,

https://members.pcisig.com/wg/PCI-SIG/document/16599 or [PCIe 6.0] Section 6.33 –

Integrity and Data Encryption (IDE)

[PCIe TDISP 1.0] PCI-SIG, TEE Device Interface Security Protocol (TDISP) 1.0 ECN, July 2022,

https://members.pcisig.com/wg/PCI-SIG/document/18255

[CXL 3.0] CXL Consortium, Compute Express Link (CXL) Specification 3.0, Version 1.0, August

2022, https://www.computeexpresslink.org/download-the-specification

[DICE HW] TCG, Hardware Requirements for a Device Identifier Composition Engine, March,

2018, https://trustedcomputinggroup.org/resource/hardware-requirements-for-a-device-

identifier-composition-engine/

[DICE Attestation] TCG, DICE Attestation Architecture, March 2021,

https://trustedcomputinggroup.org/resource/dice-attestation-architecture/

https://www.dmtf.org/dsp/DSP0274
https://www.dmtf.org/dsp/DSP0277
https://www.dmtf.org/dsp/DSP2058
https://www.dmtf.org/dsp/DSP-IS0023
https://members.pcisig.com/wg/PCI-SIG/document/18363
https://members.pcisig.com/wg/PCI-SIG/document/14143
https://members.pcisig.com/wg/PCI-SIG/document/18483
https://members.pcisig.com/wg/PCI-SIG/document/14236
https://members.pcisig.com/wg/PCI-SIG/document/16599
https://members.pcisig.com/wg/PCI-SIG/document/18255
https://www.computeexpresslink.org/download-the-specification
https://trustedcomputinggroup.org/resource/hardware-requirements-for-a-device-identifier-composition-engine/
https://trustedcomputinggroup.org/resource/hardware-requirements-for-a-device-identifier-composition-engine/
https://trustedcomputinggroup.org/resource/dice-attestation-architecture/

References

75 Document Number: 354272-001

[DICE Layering] TCG, DICE Layering Architecture, July 2020,

https://trustedcomputinggroup.org/resource/dice-layering-architecture/

[DICE Endorsement] TCG, DICE Endorsement Architecture for Device, May 2022,

https://trustedcomputinggroup.org/resource/dice-endorsement-architecture-for-devices-v1-

0-r0-38/

[CyRes] Cyber Resilient Module and Building Block Requirements, June 2022,

https://trustedcomputinggroup.org/resource/cyber-resilient-module-and-building-block-

requirements/

[SP 800-193] NIST, Platform Firmware Resiliency Guidelines, May 2018,

https://csrc.nist.gov/publications/detail/sp/800-193/final

[IETF-RATS] IETF, RFC 9334: Remote Attestation Procedures Architecture,

https://datatracker.ietf.org/doc/rfc9334/

[IETF-ATTS] IETF draft, Reference Interaction Models for Remote Attestation

Procedures, https://datatracker.ietf.org/doc/draft-ietf-rats-reference-interaction-models/

[IETF-COSWID-EXT] IETF draft, Reference Integrity Measurement Extension for Concise

Software Identities, https://datatracker.ietf.org/doc/draft-birkholz-rats-coswid-rim/

[IETF-CORIM] IETF draft, Concise Reference Integrity Manifest (CoRIM),

https://datatracker.ietf.org/doc/draft-ietf-rats-corim/

[IETF-COSWID] IETF draft, Concise Software Identification Tags (CoSWID),

https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/

[S-IOV] OCP, Scalable I/O Virtualization Revision 1.0, Version 1.2, Feb. 2022,

https://www.opencompute.org/documents/ocp-scalable-io-virtualization-technical-

specification-revision-1-v1-2-pdf

[Intel S-IOV] Intel Scalable I/O Virtualization Revision 1.1, September 2022,

https://www.intel.com/content/www/us/en/develop/download/intel-scalable-io-

virtualization-technical-specification.html

[Intel VT-d] Intel Virtualization Technology for Directed I/O Architecture Specification,

Revision 4.0, June 2022, https://www.intel.com/content/www/us/en/develop/download/intel-

virtualization-technology-for-directed-io-architecture-specification.html

[Intel RC IDE] Intel Root Complex IDE Key Configuration Unit - Software Programming Guide,

June 2022, https://www.intel.com/content/www/us/en/io/pci-express/pci-express-

architecture-devnet-resources.html

https://trustedcomputinggroup.org/resource/dice-layering-architecture/
https://trustedcomputinggroup.org/resource/dice-endorsement-architecture-for-devices-v1-0-r0-38/
https://trustedcomputinggroup.org/resource/dice-endorsement-architecture-for-devices-v1-0-r0-38/
https://trustedcomputinggroup.org/resource/cyber-resilient-module-and-building-block-requirements/
https://trustedcomputinggroup.org/resource/cyber-resilient-module-and-building-block-requirements/
https://csrc.nist.gov/publications/detail/sp/800-193/final
https://datatracker.ietf.org/doc/rfc9334/
https://datatracker.ietf.org/doc/draft-ietf-rats-reference-interaction-models/
https://datatracker.ietf.org/doc/draft-birkholz-rats-coswid-rim/
https://datatracker.ietf.org/doc/draft-ietf-rats-corim/
https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/
https://www.opencompute.org/documents/ocp-scalable-io-virtualization-technical-specification-revision-1-v1-2-pdf
https://www.opencompute.org/documents/ocp-scalable-io-virtualization-technical-specification-revision-1-v1-2-pdf
https://www.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html
https://www.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html
https://cdrdv2.intel.com/v1/dl/getContent/671081?explicitVersion=true
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.intel.com/content/www/us/en/io/pci-express/pci-express-architecture-devnet-resources.html
https://www.intel.com/content/www/us/en/io/pci-express/pci-express-architecture-devnet-resources.html

References

76 Document Number: 354272-001

[Intel TDX Connect] Intel TDX Connect Architecture Specification, January 2023,

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-

extensions.html

[AMD-SEV] AMD, AMD Secure Encrypted Virtualization (SEV), https://developer.amd.com/sev/

[ARM-RME] ARM, ARM Realm Management Extension (RME),

https://developer.arm.com/documentation/den0129

[RISCV-APTEE] RISCV, RISCV AP TEE, https://github.com/riscv-non-isa/riscv-ap-tee

Web Resources
[RATLS] Integrating Remote Attestation with Transport Layer Security (RA-TLS),

https://github.com/cloud-security-research/sgx-ra-tls

[OPENENCLAVE] open enclave, https://github.com/openenclave/openenclave

[OPENENCLAVE-RATLS] attested TLS,

https://github.com/openenclave/openenclave/blob/master/samples/attested_tls/AttestedTLS

README.md

[DEV-ATT-TEE] White paper - Device Attestation Model in Confidential Computing

Environment, https://software.intel.com/content/www/us/en/develop/articles/intel-trust-

domain-extensions.html

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://developer.amd.com/sev/
https://developer.arm.com/documentation/den0129
https://github.com/riscv-non-isa/riscv-ap-tee
https://github.com/cloud-security-research/sgx-ra-tls
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave/blob/master/samples/attested_tls/AttestedTLSREADME.md
https://github.com/openenclave/openenclave/blob/master/samples/attested_tls/AttestedTLSREADME.md
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html

